Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_3_a6, author = {A. B. Mazo and K. A. Potashev}, title = {Relative phase permeability upscaling for super element model of petroleum reservoirs}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {81--94}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_3_a6/} }
TY - JOUR AU - A. B. Mazo AU - K. A. Potashev TI - Relative phase permeability upscaling for super element model of petroleum reservoirs JO - Matematičeskoe modelirovanie PY - 2017 SP - 81 EP - 94 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_3_a6/ LA - ru ID - MM_2017_29_3_a6 ER -
A. B. Mazo; K. A. Potashev. Relative phase permeability upscaling for super element model of petroleum reservoirs. Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 81-94. http://geodesic.mathdoc.fr/item/MM_2017_29_3_a6/
[1] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik, Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984, 212 pp.
[2] A. B. Mazo, D. V. Bulygin, “Superelementy. Novyi podkhod k modelirovaniiu razrabotki neftianykh mestorozhdenii”, Neft. Gaz. Novatsii, 2011, no. 11, 6–8
[3] A. B. Mazo, K. A. Potashev, E. I. Kalinin, D. V. Bulygin, “Modelirovanie razrabotki neftianykh mestorozhdenii metodom superelementov”, Matematicheskoe modelirovanie, 25:8 (2013), 51–64 | Zbl
[4] A. Mazo, K. Potashev, E. Kalinin, “Petroleum reservoir simulation using Super Element Method”, Procedia Earth and Planetary Science, 15 (2015), 482–487 | DOI
[5] L. G. Strakhovskaya, R. P. Fedorenko, “A version of the finite element method”, USSR Computational Mathematics and Mathematical Physics, 19:4 (1979), 162–173 | DOI | MR | Zbl
[6] Z. I. Burman, O. M. Aksenov, V. I. Lukashenko, M. T. Timofeev, Superelementnyi raschet podkreplennykh obolochek, Mashinostroenie, M., 1982, 256 pp.
[7] V. A. Postnov (red.), Metod superelementov v raschetakh inzhenernykh sooruzhenii, Sudostroenie, L., 1979, 288 pp.
[8] A. V. Akhmetzyanov, V. N. Kulibanov, “Nontraditional Mathematical Models of Fluid Filtration on Porous Media”, Automation and Remote Control, 65:8 (2004), 1177–1188 | DOI | MR
[9] Y. Efendiev, V. Ginting, T. Hou, R. Ewing, “Accurate multiscale finite element methods for two-phase flow simulations”, Journal of Computational Physics, 220 (2006), 155–174 | DOI | MR | Zbl
[10] A. Kh. Pergament, V. A. Semiletov, P. Yu. Tomin, “On Some Multiscale Algorithms for Sector Modeling in Multiphase Flow in Porous Media”, Mathematical Models and Computer simulations, 3:3 (2010), 365–374 | DOI | MR | Zbl
[11] X. H. Wu, Y. Efendiev, T. Y. Hou, “Analysis of upscaling absolute permeability”, Discrete And Continuous Dynamical Systems. Series B, 2:2 (2002), 185–204 | DOI | MR | Zbl
[12] L. J. Durlofsky, “Coarse scale models of two phase flow in heterogeneous reservoirs: volume averaged equations and their relationship to existing upscaling techniques”, Computational Geosciences, 2 (1998), 73–92 | DOI | MR | Zbl
[13] H. Dykstra, R. Parsons, “The prediction of oil recovery by waterflooding”, Secondary Oil Recovery of Oil in the United States, 2nd edn., API, 1950, 160–174
[14] D. V. Bulygin, V. Ia. Bulygin, Geologiia i imitatsiia razrabotki zalezhei nefti, Nedra, M., 1996, 382 pp.
[15] A. K. Kurbanov, “O nekotorykh obobshcheniiakh uravnenii filtratsii dvukhfaznoi zhidkosti”, Nauch.- tekhn. sb., 15, VNII, M., 1961, 32–38
[16] K. H. Coats, J. R. Dempsey, J. H. Henderson, “The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir performance”, Society of Petroleum Engineers J., 11:1 (1971), 63–71 | DOI | MR
[17] C. L. Hearn, “Simulation of stratified waterflooding by pseudo relative permeability curves”, J. Pet. Technol., 23 (1971), 805–813 | DOI
[18] G. E. Pickup, P. S. Ringrose, A. Sharif, “Steady-state upscaling: from lamina-scale to full-field model”, Society of Petroleum Engineers J., 5:2 (2000), 208–217
[19] S. Ekrann, J. O. Aasen, “Steady-state upscaling”, Transport in Porous Media, 41:3 (2000), 245–262 | DOI
[20] S. E. Gasda, M. A. Celia, “Upscaling relative permeabilities in a structured porous medium”, Advances in Water Resources, 28 (2005), 493–506 | DOI
[21] H. H. Jacks, O. J. E. Smith, C. C. Mattax, “The modelling of a three-dimensional reservoir with a two-dimensional reservoir simulator — the use of dynamic pseudo functions”, Society of Petroleum Engineers J., 13:3 (1973), 175–185 | DOI
[22] J. R. Kyte, D. W. Berry, “New pseudofunctions to control numerical dispersion”, Society of Petroleum Engineers J., 15:3 (1975), 269–276 | DOI
[23] J. W. Barker, F. J. Fayers, “Transport coefficients for compositional simulation with coarse grids in heterogeneous media”, Society of Petroleum Engineers Adv. Technol. Ser., 2:2 (1994), 103–112
[24] S. P. Rodionov, L. N. Orekhova, “Opredelenie modifitsirovannykh otnositelnykh fazovykh pronitsaemostei pri preobrazovanii geologicheskoi modeli v gidrodinamicheskuiu. Chast 1”, Neft i gaz, 2008, no. 6, 12–17
[25] R. Eymard, T. Gallouet, R. Herbin, “Finite Volume Methods”, Handbook of Numerical Analysis, eds. Ph. Ciarlet, J. L. Lions, North Holland, 2000, 713–1020 | MR | Zbl
[26] T. A. Hewett, T. Yamada, “Theory for the semi-analytical calculation of oil recovery and effective relative permeabilities using streamtubes”, Advances in Water Resources, 20:5–6 (1997), 279–292 | DOI
[27] X. H. Wen, L. J. Durlofsky, M. G. Edwards, “Upscaling of channel systems in two dimensions using flow-based grids”, Transport in Porous Media, 51 (2003), 343–366 | DOI
[28] A. H. Zarifi, E. Sahraei, H. Parvizi, “Pseudo relative permeability compensation for numerical dispersion”, Petroleum Science and Technology, 30 (2012), 1529–1538 | DOI
[29] K. A. Potashev, “Apskeiling otnositelnykh fazovykh pronitsaemostei v nesoobshchaiushchemsia sloistom plaste”, Uchenye zapiski Kazanskogo universiteta. Fiziko-matematicheskie nauki, 156:2 (2014), 120–134 | Zbl
[30] J. Kozeny, “Ueber kapillare Leitung des Wassers im Boden”, Aufstieg, Versickerung und Anwendung auf die Bewaesserung. Sitzungsberichte der Akademie der Wissenschaften in Wien, 136 (1927), 271–306
[31] H. Daigle, B. Dugan, “Extending NMR data for permeability estimation in fine-grained sediments”, Marine and Petroleum Geology, 26 (2009), 1419–1427 | DOI
[32] Y. Yang, A. C. Aplin, “Permeability and petrophysical properties of 30 natural mudstones”, Journal of Geophysical Research B: Solid Earth, 112:3 (2007), 1–14
[33] M. A. Christie, P. J. Clifford, “A fast procedure for upscaling in compositional simulation”, Society of Petroleum Engineers J., 3:3 (1998), 272–278
[34] P. Dupouy, J. W. Barker, J.-P. Valois, “Grouping pseudo relative permeability curves”, In Situ, 22:1 (1998), 1–33