Relative phase permeability upscaling for super element model of petroleum reservoirs
Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 81-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The technique of local upscaling of relative permeability functions developed. The technique minimizes the phase rates approximation error during waterflood simulation of layered oil reservoir by super element method. Local upscaling is performed for each superelement and is based on the two-dimensional two-phase problem on detailed computational grid. Special analytical form for the modified functions of relative permeability is proposed. All parameters are the solution of the problem of minimizing deviations averaged and approximated phase rates through the areas corresponding to the superelement faces. Upscaling efficiency at superelement simulation is shown in the example of the synthetic reservoir section containing the set of production and injection wells, as well as in the example of real oil reservoir sector.
Keywords: upscaling, relative phase permeability, two-phase flow in porous media, petroleum reservoir simulation, super element method.
@article{MM_2017_29_3_a6,
     author = {A. B. Mazo and K. A. Potashev},
     title = {Relative phase permeability upscaling for super element model of petroleum reservoirs},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_3_a6/}
}
TY  - JOUR
AU  - A. B. Mazo
AU  - K. A. Potashev
TI  - Relative phase permeability upscaling for super element model of petroleum reservoirs
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 81
EP  - 94
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_3_a6/
LA  - ru
ID  - MM_2017_29_3_a6
ER  - 
%0 Journal Article
%A A. B. Mazo
%A K. A. Potashev
%T Relative phase permeability upscaling for super element model of petroleum reservoirs
%J Matematičeskoe modelirovanie
%D 2017
%P 81-94
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_3_a6/
%G ru
%F MM_2017_29_3_a6
A. B. Mazo; K. A. Potashev. Relative phase permeability upscaling for super element model of petroleum reservoirs. Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 81-94. http://geodesic.mathdoc.fr/item/MM_2017_29_3_a6/

[1] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik, Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984, 212 pp.

[2] A. B. Mazo, D. V. Bulygin, “Superelementy. Novyi podkhod k modelirovaniiu razrabotki neftianykh mestorozhdenii”, Neft. Gaz. Novatsii, 2011, no. 11, 6–8

[3] A. B. Mazo, K. A. Potashev, E. I. Kalinin, D. V. Bulygin, “Modelirovanie razrabotki neftianykh mestorozhdenii metodom superelementov”, Matematicheskoe modelirovanie, 25:8 (2013), 51–64 | Zbl

[4] A. Mazo, K. Potashev, E. Kalinin, “Petroleum reservoir simulation using Super Element Method”, Procedia Earth and Planetary Science, 15 (2015), 482–487 | DOI

[5] L. G. Strakhovskaya, R. P. Fedorenko, “A version of the finite element method”, USSR Computational Mathematics and Mathematical Physics, 19:4 (1979), 162–173 | DOI | MR | Zbl

[6] Z. I. Burman, O. M. Aksenov, V. I. Lukashenko, M. T. Timofeev, Superelementnyi raschet podkreplennykh obolochek, Mashinostroenie, M., 1982, 256 pp.

[7] V. A. Postnov (red.), Metod superelementov v raschetakh inzhenernykh sooruzhenii, Sudostroenie, L., 1979, 288 pp.

[8] A. V. Akhmetzyanov, V. N. Kulibanov, “Nontraditional Mathematical Models of Fluid Filtration on Porous Media”, Automation and Remote Control, 65:8 (2004), 1177–1188 | DOI | MR

[9] Y. Efendiev, V. Ginting, T. Hou, R. Ewing, “Accurate multiscale finite element methods for two-phase flow simulations”, Journal of Computational Physics, 220 (2006), 155–174 | DOI | MR | Zbl

[10] A. Kh. Pergament, V. A. Semiletov, P. Yu. Tomin, “On Some Multiscale Algorithms for Sector Modeling in Multiphase Flow in Porous Media”, Mathematical Models and Computer simulations, 3:3 (2010), 365–374 | DOI | MR | Zbl

[11] X. H. Wu, Y. Efendiev, T. Y. Hou, “Analysis of upscaling absolute permeability”, Discrete And Continuous Dynamical Systems. Series B, 2:2 (2002), 185–204 | DOI | MR | Zbl

[12] L. J. Durlofsky, “Coarse scale models of two phase flow in heterogeneous reservoirs: volume averaged equations and their relationship to existing upscaling techniques”, Computational Geosciences, 2 (1998), 73–92 | DOI | MR | Zbl

[13] H. Dykstra, R. Parsons, “The prediction of oil recovery by waterflooding”, Secondary Oil Recovery of Oil in the United States, 2nd edn., API, 1950, 160–174

[14] D. V. Bulygin, V. Ia. Bulygin, Geologiia i imitatsiia razrabotki zalezhei nefti, Nedra, M., 1996, 382 pp.

[15] A. K. Kurbanov, “O nekotorykh obobshcheniiakh uravnenii filtratsii dvukhfaznoi zhidkosti”, Nauch.- tekhn. sb., 15, VNII, M., 1961, 32–38

[16] K. H. Coats, J. R. Dempsey, J. H. Henderson, “The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir performance”, Society of Petroleum Engineers J., 11:1 (1971), 63–71 | DOI | MR

[17] C. L. Hearn, “Simulation of stratified waterflooding by pseudo relative permeability curves”, J. Pet. Technol., 23 (1971), 805–813 | DOI

[18] G. E. Pickup, P. S. Ringrose, A. Sharif, “Steady-state upscaling: from lamina-scale to full-field model”, Society of Petroleum Engineers J., 5:2 (2000), 208–217

[19] S. Ekrann, J. O. Aasen, “Steady-state upscaling”, Transport in Porous Media, 41:3 (2000), 245–262 | DOI

[20] S. E. Gasda, M. A. Celia, “Upscaling relative permeabilities in a structured porous medium”, Advances in Water Resources, 28 (2005), 493–506 | DOI

[21] H. H. Jacks, O. J. E. Smith, C. C. Mattax, “The modelling of a three-dimensional reservoir with a two-dimensional reservoir simulator — the use of dynamic pseudo functions”, Society of Petroleum Engineers J., 13:3 (1973), 175–185 | DOI

[22] J. R. Kyte, D. W. Berry, “New pseudofunctions to control numerical dispersion”, Society of Petroleum Engineers J., 15:3 (1975), 269–276 | DOI

[23] J. W. Barker, F. J. Fayers, “Transport coefficients for compositional simulation with coarse grids in heterogeneous media”, Society of Petroleum Engineers Adv. Technol. Ser., 2:2 (1994), 103–112

[24] S. P. Rodionov, L. N. Orekhova, “Opredelenie modifitsirovannykh otnositelnykh fazovykh pronitsaemostei pri preobrazovanii geologicheskoi modeli v gidrodinamicheskuiu. Chast 1”, Neft i gaz, 2008, no. 6, 12–17

[25] R. Eymard, T. Gallouet, R. Herbin, “Finite Volume Methods”, Handbook of Numerical Analysis, eds. Ph. Ciarlet, J. L. Lions, North Holland, 2000, 713–1020 | MR | Zbl

[26] T. A. Hewett, T. Yamada, “Theory for the semi-analytical calculation of oil recovery and effective relative permeabilities using streamtubes”, Advances in Water Resources, 20:5–6 (1997), 279–292 | DOI

[27] X. H. Wen, L. J. Durlofsky, M. G. Edwards, “Upscaling of channel systems in two dimensions using flow-based grids”, Transport in Porous Media, 51 (2003), 343–366 | DOI

[28] A. H. Zarifi, E. Sahraei, H. Parvizi, “Pseudo relative permeability compensation for numerical dispersion”, Petroleum Science and Technology, 30 (2012), 1529–1538 | DOI

[29] K. A. Potashev, “Apskeiling otnositelnykh fazovykh pronitsaemostei v nesoobshchaiushchemsia sloistom plaste”, Uchenye zapiski Kazanskogo universiteta. Fiziko-matematicheskie nauki, 156:2 (2014), 120–134 | Zbl

[30] J. Kozeny, “Ueber kapillare Leitung des Wassers im Boden”, Aufstieg, Versickerung und Anwendung auf die Bewaesserung. Sitzungsberichte der Akademie der Wissenschaften in Wien, 136 (1927), 271–306

[31] H. Daigle, B. Dugan, “Extending NMR data for permeability estimation in fine-grained sediments”, Marine and Petroleum Geology, 26 (2009), 1419–1427 | DOI

[32] Y. Yang, A. C. Aplin, “Permeability and petrophysical properties of 30 natural mudstones”, Journal of Geophysical Research B: Solid Earth, 112:3 (2007), 1–14

[33] M. A. Christie, P. J. Clifford, “A fast procedure for upscaling in compositional simulation”, Society of Petroleum Engineers J., 3:3 (1998), 272–278

[34] P. Dupouy, J. W. Barker, J.-P. Valois, “Grouping pseudo relative permeability curves”, In Situ, 22:1 (1998), 1–33