Computational efficiency of GPU-based uncompressible flow simulation
Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 16-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers increasing of computational efficiency by means of graphics processors. The numerical method is based on pressure-velocity coupling by pressure correction equation. CUDA is used for calculation on graphical processors. Parallel calculations on graphics processors, central processors or both graphical and central processors are used with computational domain decomposition. Steady laminar flow in a container with rotating end wall and unsteady laminar flow around a circular cylinder are used as tests. Higher computational efficiency of calculations on graphics processors as compared with calculations on central processors is shown.
Keywords: GPGPU, numerical simulation, MPI, CUDA.
Mots-clés : CFD, SIMPLE
@article{MM_2017_29_3_a1,
     author = {A. Sentyabov and A. Gavrilov and S. Grizan and A. Dekterev and D. Boykov},
     title = {Computational efficiency of {GPU-based} uncompressible flow simulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--28},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_3_a1/}
}
TY  - JOUR
AU  - A. Sentyabov
AU  - A. Gavrilov
AU  - S. Grizan
AU  - A. Dekterev
AU  - D. Boykov
TI  - Computational efficiency of GPU-based uncompressible flow simulation
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 16
EP  - 28
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_3_a1/
LA  - ru
ID  - MM_2017_29_3_a1
ER  - 
%0 Journal Article
%A A. Sentyabov
%A A. Gavrilov
%A S. Grizan
%A A. Dekterev
%A D. Boykov
%T Computational efficiency of GPU-based uncompressible flow simulation
%J Matematičeskoe modelirovanie
%D 2017
%P 16-28
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_3_a1/
%G ru
%F MM_2017_29_3_a1
A. Sentyabov; A. Gavrilov; S. Grizan; A. Dekterev; D. Boykov. Computational efficiency of GPU-based uncompressible flow simulation. Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 16-28. http://geodesic.mathdoc.fr/item/MM_2017_29_3_a1/

[1] A. V. Boreskov, A. A. Kharlamov, Osnovy raboty s tekhnologiei CUDA, DMK Press, M., 2010, 232 pp.

[2] K. N. Volkov, Iu. N. Deriugin, V. N. Emelianov, A. G. Karpenko, A. S. Kozelkov, I. V. Teterina, Metody uskoreniya gazodinamicheskikh raschetov na nestrukturirovannykh setkakh, Fizmatlit, M., 2013, 600 pp.

[3] M. M. Krasnov, “Operatornaia biblioteka dlia resheniia mnogomernykh zadach matematicheskoi fiziki na iazyke CUDA”, Matematicheskoe modelirovanie, 27:3 (2015), 109–120

[4] A. V. Gorobets, S. A. Sukov, A. O. Zhelezniakov, P. B. Bogdanov, B. N. Chetverushkin, “Primenenie GPU v ramkakh gibridnogo dvukhurovnevogo rasparallelivaniia MPI+OpenMP na geterogennykh sistemakh”, Parallelnye vychislitelnye tekhnologii, Sb. tr. mezhd. konferentsii, 2011, 452–460

[5] A. A. Gavrilov, A. V. Minakov, A. A. Dekterev, V. Ya. Rudyak, “A numerical algorithm for modeling laminar flows in an annular channel with eccentricity”, Journal of Applied and Industrial Mathematics, 5:4 (2011), 559–568 | DOI | MR

[6] A. A. Dekterev, A. A. Gavrilov, A. V. Minakov, “Sovremennye vozmozhnosti CFD koda SigmaFlow dlia resheniia teplofizicheskikh zadach”, Sovremennaia nauka: issledovaniia, idei, rezultaty, tekhnologii, 4:2 (2010), 117–122

[7] A. A. Gavrilov, Vychislitelnye algoritmy i kompleksy programm dlia chislennogo modelirovaniia techenii neniutonovskikh zhidkostei v koltsevom kanale, Dissertatsiia kand. fiz.-mat. nauk, Institut Vychislitelnykh tekhnologii, Novosibirsk, 2014

[8] A. A. Gavrilov, A. V. Minakov, A. A. Dekterev, V. Ia. Rudiak, “Chislennyi algoritm dlia modelirovaniia ustanovivshikhsia laminarnykh techenii neniutonovskikh zhidkostei v kolcevom zazore s ekstsentrisitetom”, Vychislitelnye tekhnologii, 17:1 (2012), 44–56

[9] J. Mavriplis, Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes, AIAA-Paper 2003-3986, June 2003

[10] J. H. Ferziger, M. Peric, Computational methods for fluid dynamics, Springer, 2002, 423 pp. | MR | Zbl

[11] F. Moukalled, M. Darwish, “A Unified Formulation of the Segregated Class of Algorithms for Fluid Flow at All Speeds”, Numerical Heat Transfer, Part B, 37:2 (2000), 227–246 | DOI | MR

[12] I. A. Belov, S. A. Isaev, V. A. Korobkov, Zadachi i metody rascheta otryvnykh techenii neszhimaemoi zhidkosti, Sudostroenie, L., 1989, 256 pp.

[13] S. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, New York, 1980, 197 pp. | Zbl

[14] C. M. Rhie, W. L. Chow, “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with trailing Edge Separation”, AIAA Journal, 21 (1983), 1525–1532 | DOI | Zbl

[15] B. P. Leonard, “A stable and accurate convective modeling procedure based on quadratic upstream interpolation”, Comp. Math. Appl. Mech. Eng., 19 (1979), 59–98 | DOI | Zbl

[16] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994, 135 pp. | MR

[17] A. A. Samarskii, E. S. Nikolaev, Metody resheniia setochnykh uravnenii, Nauka, M., 1978, 592 pp.

[18] G. Karypis, V. Kumar, “A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs”, SIAM Journal on Scientific Computing, 20:1 (1999), 359–392 | DOI | MR | Zbl

[19] J. A. Michelsen, Modeling Incompressible Rotating Fluid Flow, Ph.D. thesis, Technical University of Denmark, 1986

[20] M. P. Escudier, “Observation of the flow produced in a cylindrical container by a rotating endwall”, Exp. in Fluids, 2:4 (1984), 189–196 | DOI