Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_3_a0, author = {B. Chetverushkin and N. D'Ascenzo and A. Saveliev and V. Saveliev}, title = {A kinetic model for magnetogasdynamics}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--15}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_3_a0/} }
TY - JOUR AU - B. Chetverushkin AU - N. D'Ascenzo AU - A. Saveliev AU - V. Saveliev TI - A kinetic model for magnetogasdynamics JO - Matematičeskoe modelirovanie PY - 2017 SP - 3 EP - 15 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_3_a0/ LA - ru ID - MM_2017_29_3_a0 ER -
B. Chetverushkin; N. D'Ascenzo; A. Saveliev; V. Saveliev. A kinetic model for magnetogasdynamics. Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/MM_2017_29_3_a0/
[1] B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations, CIMNE, Barcelona, 2008
[2] A. A. Davydov, B. N. Chetverushkin, E. V. Shil'nikov, “Simulating flows of incompressible and weakly compressible fluids on multicore hybrid computer systems”, Comput. Math. and Math. Phys., 50:12 (2010), 2157–2166 | DOI | MR | Zbl
[3] B. N. Chetverushkin, “Kinetic models for solving continuum mechanics problems on supercomputers”, Math. Models and Comput. Simul., 7:6 (2015), 531–539 | DOI | MR | Zbl
[4] S. Chapman, T. G. Cowling, The mathematical theory of non-uniform gases, Cambridge University Press, Cambridge, 1991, 448 pp. | MR | Zbl
[5] B. N. Chetverushkin, N. D'Ascenzo, V. I. Saveliev, “Kinetically consistent magnetogasdynamics equations and their use in supercomputer computations”, Dokl. Math., 90:1 (2014), 495–498 | DOI | DOI | MR | Zbl
[6] B. Chetverushkin, N. D'Ascenzo, S. Ishanov, V. Saveliev, “Hyperbolic type explicit kinetic scheme of magneto gas dynamics for high performance computing systems”, Rus. J. Num. Anal. Math. Model., 30:1 (2015), 27–36 | MR | Zbl
[7] N. D'Ascenzo, V. I. Saveliev, B. N. Chetverushkin, “On an algorithm for solving parabolic and elliptic equations”, Comput. Math. and Math. Phys., 55:8 (2015), 1290–1297 | DOI | DOI | MR | Zbl
[8] B. N. Chetverushkin, N. D'Ascenzo, V. I. Saveliev, “Three-level scheme for solving parabolic and elliptic equations”, Dokl. Math., 91:3 (2015), 341–343 | DOI | DOI | MR | Zbl
[9] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical aspects of numerical solution of hyperbolic systems, CRC Press, Boca Raton, 2000, 560 pp. | MR
[10] B. N. Chetverushkin, V. I. Saveliev, “Kineticheskie modeli i vysokoproizvoditelnye vychilsleniya”, Keldysh Institute preprints, 2015, 079, 31 pp.
[11] S. M. Repin, B. N. Chetverushkin, “Estimates of the difference between approximate solutions of the Cauchy problems for the parabolic diffusion equation and a hyperbolic equation with a small parameter”, Dokl. Math., 88:1 (2013), 417–420 | DOI | DOI | MR | Zbl
[12] E. E. Myshetskaya, V. F. Tishkin, “Estimates of the hyperbolization effect on the heat equation”, Comput. Math. and Math. Phys., 55:8 (2015), 1270–1275 | DOI | DOI | MR | Zbl
[13] M. D. Surnachev, V. F. Tishkin, B. N. Chetverushkin, “O zakonakh sokhraneniya dlya giperbolizirovannykh uravnenii”, Diff. Uravneniya, 2016
[14] D. Balsara, “Divergence-Free Adaptive Mesh Refinement for Magnetohydrodynamics”, J. Comput. Phys., 174 (2001), 614 | DOI | Zbl
[15] T. G. Elizarova, M. V. Popov, “Numerical simulation of three-dimensional quasi-neutral gas flows based on smoothed magnetohydrodynamic equations”, Comput. Math. and Math. Phys., 55:8 (2015), 1330–1345 | DOI | DOI | MR | Zbl
[16] D. S. Balsara, “Divergence-Free Reconstruction of Magnetic Fields and WENO Schemes for Magnetohydrodynamics”, J. Comp. Phys., 228 (2009), 5040–5056 | DOI | MR | Zbl
[17] S. A. Orszag, C.-M. Tang, “Small-Scale Structure of Two-Dimensional Magnetohydrodynamic Turbulence”, J. Fluid Mech., 90 (1979), 129–143 | DOI
[18] J. M. Stone, T. A. Gardiner, P. Teuben, J. F. Hawley, J. B. Simon, “Athena: A New Code for Astrophysical MHD”, Astrophys. J. Suppl., 178 (2008), 137 | DOI | MR