Methods of local analysis and smoothing of time series and discrete signals
Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 119-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

Regularization recovery algorithm has been developed in general smooth dependencies based on described time series and discrete signals by the sequences of generalized polynomials under the system of linearly independent functions. The coefficients of generalized polynomials are computed by recurrent way using the equation, which is obtained by least squares and local analysis methods. Verification of algorithm is performed on examples of smoothing the RTS index and the average value of the signal drift recovery. As the basic system is used a power system functions. The simulation showed the efficiency of the local method of smoothing, and established the influence of regularization parameter on stability algorithm.
Keywords: local approximation, quadratic minimization, regularization, solution stability, restoration of drift.
@article{MM_2017_29_2_a8,
     author = {V. A. Ermolaev and Yu. A. Kropotov},
     title = {Methods of local analysis and smoothing of time series and discrete signals},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {119--132},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a8/}
}
TY  - JOUR
AU  - V. A. Ermolaev
AU  - Yu. A. Kropotov
TI  - Methods of local analysis and smoothing of time series and discrete signals
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 119
EP  - 132
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_2_a8/
LA  - ru
ID  - MM_2017_29_2_a8
ER  - 
%0 Journal Article
%A V. A. Ermolaev
%A Yu. A. Kropotov
%T Methods of local analysis and smoothing of time series and discrete signals
%J Matematičeskoe modelirovanie
%D 2017
%P 119-132
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_2_a8/
%G ru
%F MM_2017_29_2_a8
V. A. Ermolaev; Yu. A. Kropotov. Methods of local analysis and smoothing of time series and discrete signals. Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 119-132. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a8/

[1] V. Ia. Katkovnik, Neparametricheskaia identifikatsiia i sglazhivanie dannykh: metod lokalnoi approksimatsii, Nauka, M., 1985, 336 pp.

[2] A. Iu. Loskutov, A. S. Mikhailov, Osnovy teorii slozhnykh system, Instityt kompiuternykh issledovanii, M.–Izhevsk, 2007, 620 pp.

[3] O. N. Granichin, B. T. Poliak, Randomizirovannye algoritmy otsenivaniia i optimizatsii pri pochti proizvolnykh pomekhakh, Nauka, M., 2003, 291 pp.

[4] L. Ljung, System identification: Theory for the user, Prentice-Hall, NJ, 1987, 519 pp. | MR | MR | Zbl

[5] V. A. Ermolaev, O. E. Karasev, Iu. A. Kropotov, “Metod interpoliatsionnoi filtratsii v zadachakh obrabotki rechevykh signalov vo vremennoi oblasti”, Vestnik kompiuternykh i informatsionnykh tekhnologii, 2008, no. 7, 12–17

[6] V. A. Ermolaev, V. T. Eremenko, O. E. Karasev, Yu. A. Kropotov, “Identification of models for discrete linear systems with variable, slowly varying parameters”, Journal of Communications Technology and Electronics, 55:1 (2010), 52–56 | DOI

[7] V. A. Zverev, “Blind dereverberation of a speech signal”, Acoustical Physics, 54:2 (2008), 261–268 | DOI

[8] I. Cohen, J. Benesty, S. Cannot (eds.), Speech Processing in modern communication, Springer, Berlin, 2010, 342 pp. | Zbl

[9] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, Nayka, M., 1973, 552 pp. | MR

[10] V. A. Ermolaev, “Interpoliatsionnye vosstanavlivaiushchie filtry: opredeliaiushchie formuly i peredatochnye funktsii”, Pribory i sistemy. Upravlenie, control, diagnostika, 2001, no. 11, 35–39

[11] V. A. Ermolaev, “Interpoliatsionnye vosstanavlivaiushchie filtry: metod dinamicheskoi interpoliatsii”, Pribory i sistemy. Upravlenie, control, diagnostika, 2002, no. 2, 39–42

[12] L. R. Rabiner, R. W. Schafer, Digital processing of speech signals, Prentice-Hall, NJ, 1978, 512 pp.