A single velocity model for calculating of two-phase flows from first principles
Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 91-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

A single velocity model of one-component media for calculating of two-phase flows is presented. The model is based on conservation laws with a minimum of additional assumptions. The model and numerical method are intended for use in direct numerical simulation (DNS) of complex twophase flows on high-performance computing systems (exascale computing). The closed system of governing equations written for non-averaged parameters (so-called micro parameters) of the medium with a complex equation of state. It is assumed from the beginning that each point of the flow field is completely characterized by a single density, single velocity and single internal energy. The phases interaction is described by means of the diffuse interface model. A method of reconstructing the thermodynamic functions for all possible values of density and internal energy is presented. It is based on the use of the corresponding functions for the pure phases. Hydrodynamic basis of the model is Navier–Stokes equation system. The reliability of the model is tested on 1D problems such as the Stefan problem and the formation and merging of real water bubbles problem.
Keywords: two-phase flows, single velocity model, conservation laws, direct numerical simulation, thermodynamic model, real properties of water.
Mots-clés : diffuse interface
@article{MM_2017_29_2_a6,
     author = {N. A. Zaitsev and B. V. Kritskiy},
     title = {A single velocity model for calculating of two-phase flows from first principles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {91--105},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a6/}
}
TY  - JOUR
AU  - N. A. Zaitsev
AU  - B. V. Kritskiy
TI  - A single velocity model for calculating of two-phase flows from first principles
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 91
EP  - 105
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_2_a6/
LA  - ru
ID  - MM_2017_29_2_a6
ER  - 
%0 Journal Article
%A N. A. Zaitsev
%A B. V. Kritskiy
%T A single velocity model for calculating of two-phase flows from first principles
%J Matematičeskoe modelirovanie
%D 2017
%P 91-105
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_2_a6/
%G ru
%F MM_2017_29_2_a6
N. A. Zaitsev; B. V. Kritskiy. A single velocity model for calculating of two-phase flows from first principles. Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 91-105. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a6/

[1] B. Wendroff, Two-fluid models: A critical survey, Report of Los Alamos Scientific Laboratory, 1979

[2] Yu. B. Radvogin, “Non-hyperbolicity of the two-phase flow equations and Kelvin–Helmholtz instability”, Keldysh Institute preprints, 1995, 125, 11 pp.

[3] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. I, Nauka, M., 1987, 464 pp.; т. II, 360 с.; R. I. Nigmatulin, Dynamics of Multiphase Media, v. 1, Hemisphere, N.Y., 1990, 532 pp.; v. 2, 388 pp.

[4] J. S. Rowlinson, B. Widom, Molecular Theory of Capillarity, Clarendon Press, Oxford, 1982, 380 pp.

[5] A. Yu. Demianov, O. Yu. Dinariev, N. V. Evseev, Osnovy metoda funktsionala plotnosti v gidrodinamike, Nauka, M., 2009, 312 pp.

[6] V. S. Surov, “Odnoskorostnaia model geterogennoi sredy”, Matematicheskoe modelirovanie, 13:10 (2001), 27–42 | MR

[7] V. S. Surov, “Giperbolicheskie modeli v mekhanike geterogennykh sred”, Zh. vychisl. matem. i matem. fiz., 54:1 (2014), 139–148 | DOI | MR | Zbl

[8] N. A. Zaitsev, B. V. Kritski, Iu. G. Rykov, “Ob odnoi modeli rascheta dvukhfaznykh potokov”, Keldysh Institute preprints, 2014, 086, 32 pp.

[9] L. A. Bolshov (red.), Metody priamogo chislennogo modelirovania v dvukhfaznykh sredakh, Trudy IBRAE RAN, 14, Nauka, M., 2013, 197 pp.

[10] Iu. G. Rykov, N. A. Zaitsev, V. V. Kabanov, V. G. Lysov, R. F. Khabibulin, “Vozmozhnaia termodinamicheskaia model dlia ispolzovania v skheme priamogo chislennogo modelirovania dvukhfaznyh potokov”, Keldysh Institute preprints, 2012, 040, 18 pp.

[11] V. M. Goloviznin, N. A. Zaitsev, V. V. Kabanov, V. G. Lysov, Iu. G. Rykov, “Ob odnom podkhode k priamomu modelirovaniu dvukhfaznykh potokov”, Keldysh Institute preprints, 2012, 073, 36 pp.

[12] A. Harten, P. Lax, B. van Leer, “On upstream differencing and Gudonov-type schemes for hyperbolic conservation laws”, SIAM Review, 25:1 (1983), 35–61 | DOI | MR | Zbl

[13] R. B. Dooley (Executive Secretary), IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, The International Association for the Properties of Water and Steam, , Electric Power Research Institute, Palo Alto, CA 94304, USA http://www.iapws.org/relguide/IF97-Rev.pdf