Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_2_a4, author = {A. V. Kudin and S. V. Choporov and S. V. Gomenyuk}, title = {Axisymmetric bending of circular and annular sandwich plates with the nonlinear elastic core material}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {63--78}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a4/} }
TY - JOUR AU - A. V. Kudin AU - S. V. Choporov AU - S. V. Gomenyuk TI - Axisymmetric bending of circular and annular sandwich plates with the nonlinear elastic core material JO - Matematičeskoe modelirovanie PY - 2017 SP - 63 EP - 78 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_2_a4/ LA - ru ID - MM_2017_29_2_a4 ER -
%0 Journal Article %A A. V. Kudin %A S. V. Choporov %A S. V. Gomenyuk %T Axisymmetric bending of circular and annular sandwich plates with the nonlinear elastic core material %J Matematičeskoe modelirovanie %D 2017 %P 63-78 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_2_a4/ %G ru %F MM_2017_29_2_a4
A. V. Kudin; S. V. Choporov; S. V. Gomenyuk. Axisymmetric bending of circular and annular sandwich plates with the nonlinear elastic core material. Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 63-78. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a4/
[1] A. K. Noor, S. W. Burton, C. W. Bert, “Computational Models for Sandwich Panels and Shells”, Applied Mechanics Reviews, 49:3 (1996), 155–199 | DOI
[2] L. M. Kurshin, “Obzor rabot po raschetu trekhslojnykh plastin i obolochek”, Raschet prostranstvennykh konstruktsii, 1962, no. 2, 163–192
[3] E. Carrera, “Historical review of zig-zag theories for multilayered plates and shells”, Appl. Mech. Rev., 56 (2003), 287–308 | DOI | MR
[4] E. Magnucka-Blandzi, L. Wittenbeck, “Approximate solutions of equilibrium equations of sandwich circular plate”, AIP Conference Proceedings, 1558, 2013, 2352–2355 | DOI
[5] K. A. Magnucki, P. A. Jasion, E. B. Magnucka-Blandzi, P. A. Wasilewicz, “Theoretical and experimental study of a sandwich circular plate under pure bending”, Thin-Walled Structures, 79 (2014), 1–7 | DOI
[6] I. A. Tsurpal, Raschet elementov konstruktsii iz nelineino-uprugikh materialov, «Tekhnika», K., 1976, 176 pp.
[7] Iu. N. Tamurov, “Variant obobshchennoi teorii trekhsloinykh pologih obolochek s uchetom obzhatiia fizicheski nelineinogo zapolnitelia”, Prikl. mekhanika, 26:12 (1990), 39–45 | Zbl
[8] A. Riahi, J. H. Curran, “Full 3D finite element Cosserat formulation with application in layered structures”, Applied Mathematical Modelling, 33 (2009), 3450–3464 | DOI | MR | Zbl
[9] M. M. MacLaughlin, D. M. Doolin, “Review of validation of the discontinuous deformation analysis (DDA) method”, International Journal for Numerical and Analytical Methods in Geomechanics, 30:4 (2006), 271–305 | DOI | Zbl
[10] G. N. Pande, G. Beer, J. R. Williams, Numerical methods in rock mechanics, Wiley, Chichester–New York, 1990, 327 pp. | MR | Zbl
[11] J. R. Williams, R. O'Connor, “Discrete element simulation and the contact problem”, Archives of Computational Methods in Engineering, 6:4 (1999), 279–304 | DOI | MR
[12] G. Kauderer, Nichtlineare Mechanik, Springer-Verlag, Berlin–Heidelberg, 1958, 684 pp. | MR | Zbl
[13] A. G. Gorshkov, E. I. Starovojtov, A. V. Iarovaya, Mekhanika sloistykh viazkouprugoplasticheskikh elementov konstruktsii, Fizmatlit, M., 2005, 576 pp.
[14] I. P. Mikhajlov, “Nekotorye zadachi osesimmetrichnogo izgiba kruglykh trekhsloinykh plastin s zhestkim zapolnitelem”, Trudy Leningradskogo korablestroitelnogo instituta, 66 (1969), 125–131
[15] A. P. Prusakov, “Nekotorye zadachi izgiba kruglykh trekhsloinykh plastin s legkim zapolnitelem”, Tr. konf. po teor. plastin i obolochek, v. 1, 1961, 293–297
[16] S. A. Ambartsumyan, Teoriia anizotropnykh plastin: Prochnost, ustoichivost i kolebaniia, Nauka, M., 1987, 360 pp.
[17] Liu Renhuai, “Nonlinear Bending of Circular Sandwich Plates”, Applied Mathematics and Mechanics, English Edition, 2:2 (1981), 189–208 | DOI | Zbl
[18] A. V. Kudin, “Primenenie metoda malogo parametra pri modelirovanii izgiba simmetrichnykh trekhsloinykh plastin s nelinejno-uprugim zapolnitelem”, Visnik Skhidnoukrainskogo nacionalnogo universitetuimeni Volodimira Dalya, 11:165 (2011), 32–40 | Zbl
[19] A. V. Kudin, “Reshenie zadachi osesimmetrichnogo izgiba kruglykh trekhsloinykh plastin s nelineino-uprugim zapolnitelem”, Estestvennye i matematicheskie nauki v sovremennom mire, 3:15, Sb. st. po materialam XVI mezhdunar. nauch.-prakt. konf. (2014), 80–98
[20] M. S. Kornishin, Nelineinye zadachi teorii plastin i pologikh obolochek i metody ikh resheniia, Nauka, M., 1964, 192 pp.