The method to get linear Caushy problem solution using parallel calculation
Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 47-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of solution the linear Cauchy problem for large systems of ordinary differential equations using parallel calculations is presented. The algorithm for linear systems of first order equations was realized by EDELWEISS computer code. This algorithm was developed especially for supercomputers that may use MPI technology to data exchange for parallel processes. The solution is presented as a row by orthogonal polynomials at $[0,1]$ segment. Features of this algorithm are simplicity, opportunity to get solution by parallel calculations and also possibility to get a solution for non-linear tasks by changing the operator using the solution from iteration process. The test problems are presented for time-dependent heat transport equation solution. Results obtained by EDELWEISS, RELAP5/MOD3.3, ANSYS and LUCKY_HEATER codes are compared.
Keywords: Cauchy problem, algorithm, iteration process, program, computer, system of equations, space, vector, test tasks.
Mots-clés : solution
@article{MM_2017_29_2_a3,
     author = {A. V. Moryakov and S. S. Pylev and A. A. Sedov and A. S. Lubina},
     title = {The method to get linear {Caushy} problem solution using parallel calculation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--62},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a3/}
}
TY  - JOUR
AU  - A. V. Moryakov
AU  - S. S. Pylev
AU  - A. A. Sedov
AU  - A. S. Lubina
TI  - The method to get linear Caushy problem solution using parallel calculation
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 47
EP  - 62
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_2_a3/
LA  - ru
ID  - MM_2017_29_2_a3
ER  - 
%0 Journal Article
%A A. V. Moryakov
%A S. S. Pylev
%A A. A. Sedov
%A A. S. Lubina
%T The method to get linear Caushy problem solution using parallel calculation
%J Matematičeskoe modelirovanie
%D 2017
%P 47-62
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_2_a3/
%G ru
%F MM_2017_29_2_a3
A. V. Moryakov; S. S. Pylev; A. A. Sedov; A. S. Lubina. The method to get linear Caushy problem solution using parallel calculation. Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 47-62. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a3/

[1] A. V. Moryakov, “Algoritm resheniia lineinoi zadachi Koshi dlia sistem obyknovennykh differentsialnykh uravnenii bolshoi razmernosti s ispolzovaniem parallelnykh vychislenii”, VANT. Ser. Fizika iadernykh reaktorov, 2015, no. 2

[2] RELAP5/MOD3.3 Code Manual, NUREG/CR-5535/Rev.P3, v. 1–8, ISL, Inc., Rockwell, MaryLand, Idaho, USA, March 2003

[3] ANSYS, Release 12.1, ISO 9001:2008, , ANSYS Inc., Southpointe 275 Technology Drive, Canonsburg, PA 15317, November 2009 http://www.ansys.com

[4] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR

[5] G. Korn, T. Korn, Spravochnik po matematike, Nauka, M., 1970 | MR

[6] V. V. Voevodin, Vl. V. Voevodin, Parallelnye vychislenia, BHV-Petersburg, SPb., 2002

[7] A. V. Moryakov, “The LUCKY program for solving the transport equation for neutrons and gamma radiation with the use of parallel technologies”, Physics of Atomic Nuclei, 74:14 (2011), 1891 | DOI

[8] A. V. Moryakov, “Algorithm for obtaining angular fluxes in a cell for the LUCKY and LUCKY_C multiprocessor programs”, Physics of Atomic Nuclei, 75:14 (2012), 1627 | DOI

[9] A. V. Moryakov, “Algorithm intended for space-energy parallelization in solving the criticality problem and implemented in the LUCKY_C multiprocessor program”, Physics of Atomic Nuclei, 76:13 (2013), 1569 | DOI

[10] https://www.jscc.com