Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_2_a2, author = {E. P. Shurina and B. V. Rak and P. S. Zhigalov}, title = {Analysis of {PML} effectiveness in low-frequency applications (marine geoelectrics)}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {33--46}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a2/} }
TY - JOUR AU - E. P. Shurina AU - B. V. Rak AU - P. S. Zhigalov TI - Analysis of PML effectiveness in low-frequency applications (marine geoelectrics) JO - Matematičeskoe modelirovanie PY - 2017 SP - 33 EP - 46 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_2_a2/ LA - ru ID - MM_2017_29_2_a2 ER -
E. P. Shurina; B. V. Rak; P. S. Zhigalov. Analysis of PML effectiveness in low-frequency applications (marine geoelectrics). Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 33-46. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a2/
[1] E. P. Shurina, M. I. Epov, A. V. Marienko, “Morskaia geoelektrika — zadachi i perspektivy”, Tez. dokl. Vseross. nauchno-tekhn. konf. “Nauchnoe i tekhnicheskoe obespechenie issledovaniia i osvoeniia shelfa Severnogo Ledovitogo okeana” (9–13 avg. 2010), 7–12
[2] P. T. Gabrielsen, D. V. Shantsev, S. Fanavoll, “3D CSEM for Hydrocarbon Exploration in the Barents Sea”, 5th St. Petersburg International Conference Exhibition — Geosciences: Making the most of the Earth's resources (2–5 April 2012), 1–5
[3] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations”, IEEE Trans. on EMC, EMC-23 (1981), 377–382
[4] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of computation physics, 114 (1994), 185–200 | DOI | MR | Zbl
[5] R. L. Higdon, “Absorbing Boundary Conditions for Difference Approximations to the Multi-Dimensional Wave Equation”, Mathematics of Computation, 47:176 (1986), 437–459 | MR | Zbl
[6] W. C. Chew, W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates”, Microw. Opt. Technol. Lett., 7:13 (1994), 599–604 | DOI
[7] Z. S. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition”, IEEE Trans. Antennas Propagat., 43 (1995), 1460–1463 | DOI
[8] J. Park, I. T. Bjornara, H. Westerdahl, E. Gonzalez, “On Boundary Conditions for CSEM Finite Element Modeling, I”, Excerpt from the Proceedings of the COMSOL Conference (Hannover, 2008)
[9] A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Acad. Press Ltd., San Diego, USA, 1998 | MR | Zbl
[10] J. C. Nedelec, “Mixed finite elements in R3”, Numer. Math., 1980, no. 3, 315–341 | DOI | MR | Zbl
[11] J. C. Nedelec, “A New Family of Mixed Finite Elements in R3”, Numer. Math., 50 (1986), 57–81 | DOI | MR | Zbl
[12] R. Hiptmair, “Multigrid methods for Maxwell's equations”, SIAM J. Nymer. Anal., 1998, no. 1, 204–225 | DOI | MR | Zbl
[13] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, 2003 | MR | Zbl
[14] E. I. Mikhajlova, E. P. Shurina, “Matematicheskoe modelirovanie vysokochastotnogo elektromagnitnogo polia v volnovodnykh ustrojstvakh”, Vestnik NGU. Seriia: Matematika, mekhanika, informatika, 13 (2013), 102–118 | Zbl
[15] J. P. Webb, “Edge elements and what they cando for you”, IEEE Trans. On Magnetic, 1993
[16] C. Schwarzbach, Stability of Finite Element Solutions to Maxwell's Equations in Frequency Domain, Dis. Dr. Rer. Nat. Gorlitz, 2009
[17] T. Wiik, M. V. De Hoop, B. Ursin, “A Discontinuous Galerkin Method for Modelling Marine Controlled Source Electromagnetic Data”, Proceedings of the Project Review, Geo-Mathematical Imaging Group, v. 1, Purdue University, West Lafayette, IN, 2013, 75–102
[18] P. J. Matuszyk, L. F. Demkowicz, Parametric Finite Elements, Exact Sequences, and Perfectly Matched Layers, ICES REPORT 11-41, The Institute for Computational Engineering and Sciences, the University of Texas at Austin, November 2011 | MR
[19] O. Nechaev, E. Shurina, M. Botchev, “Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation”, Comp. Math. with Appl., 55:10 (2008), 2346–2362 | DOI | MR | Zbl