Analysis of PML effectiveness in low-frequency applications (marine geoelectrics)
Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 33-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this research is to investigate the use of perfectly matched layer (PML) to restrict the computational domain in marine geoelectrics at low frequencies (1–100 Hz). Numerical experiments were performed on unstructured tetrahedral meshes with the vector finite element method using a modified two-level method for solving the system of linear algebraic equations. The PML is introduced in a variational formulation as a subdomain with special coefficients. The tangential component of the electric field continuity condition and the jump of a normal component are held on PML-domain interfaces.
Keywords: vector finite element method, perfectly matched layer (PML)
Mots-clés : marine geoelectrics.
@article{MM_2017_29_2_a2,
     author = {E. P. Shurina and B. V. Rak and P. S. Zhigalov},
     title = {Analysis of {PML} effectiveness in low-frequency applications (marine geoelectrics)},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--46},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a2/}
}
TY  - JOUR
AU  - E. P. Shurina
AU  - B. V. Rak
AU  - P. S. Zhigalov
TI  - Analysis of PML effectiveness in low-frequency applications (marine geoelectrics)
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 33
EP  - 46
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_2_a2/
LA  - ru
ID  - MM_2017_29_2_a2
ER  - 
%0 Journal Article
%A E. P. Shurina
%A B. V. Rak
%A P. S. Zhigalov
%T Analysis of PML effectiveness in low-frequency applications (marine geoelectrics)
%J Matematičeskoe modelirovanie
%D 2017
%P 33-46
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_2_a2/
%G ru
%F MM_2017_29_2_a2
E. P. Shurina; B. V. Rak; P. S. Zhigalov. Analysis of PML effectiveness in low-frequency applications (marine geoelectrics). Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 33-46. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a2/

[1] E. P. Shurina, M. I. Epov, A. V. Marienko, “Morskaia geoelektrika — zadachi i perspektivy”, Tez. dokl. Vseross. nauchno-tekhn. konf. “Nauchnoe i tekhnicheskoe obespechenie issledovaniia i osvoeniia shelfa Severnogo Ledovitogo okeana” (9–13 avg. 2010), 7–12

[2] P. T. Gabrielsen, D. V. Shantsev, S. Fanavoll, “3D CSEM for Hydrocarbon Exploration in the Barents Sea”, 5th St. Petersburg International Conference Exhibition — Geosciences: Making the most of the Earth's resources (2–5 April 2012), 1–5

[3] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations”, IEEE Trans. on EMC, EMC-23 (1981), 377–382

[4] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of computation physics, 114 (1994), 185–200 | DOI | MR | Zbl

[5] R. L. Higdon, “Absorbing Boundary Conditions for Difference Approximations to the Multi-Dimensional Wave Equation”, Mathematics of Computation, 47:176 (1986), 437–459 | MR | Zbl

[6] W. C. Chew, W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates”, Microw. Opt. Technol. Lett., 7:13 (1994), 599–604 | DOI

[7] Z. S. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition”, IEEE Trans. Antennas Propagat., 43 (1995), 1460–1463 | DOI

[8] J. Park, I. T. Bjornara, H. Westerdahl, E. Gonzalez, “On Boundary Conditions for CSEM Finite Element Modeling, I”, Excerpt from the Proceedings of the COMSOL Conference (Hannover, 2008)

[9] A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Acad. Press Ltd., San Diego, USA, 1998 | MR | Zbl

[10] J. C. Nedelec, “Mixed finite elements in R3”, Numer. Math., 1980, no. 3, 315–341 | DOI | MR | Zbl

[11] J. C. Nedelec, “A New Family of Mixed Finite Elements in R3”, Numer. Math., 50 (1986), 57–81 | DOI | MR | Zbl

[12] R. Hiptmair, “Multigrid methods for Maxwell's equations”, SIAM J. Nymer. Anal., 1998, no. 1, 204–225 | DOI | MR | Zbl

[13] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, 2003 | MR | Zbl

[14] E. I. Mikhajlova, E. P. Shurina, “Matematicheskoe modelirovanie vysokochastotnogo elektromagnitnogo polia v volnovodnykh ustrojstvakh”, Vestnik NGU. Seriia: Matematika, mekhanika, informatika, 13 (2013), 102–118 | Zbl

[15] J. P. Webb, “Edge elements and what they cando for you”, IEEE Trans. On Magnetic, 1993

[16] C. Schwarzbach, Stability of Finite Element Solutions to Maxwell's Equations in Frequency Domain, Dis. Dr. Rer. Nat. Gorlitz, 2009

[17] T. Wiik, M. V. De Hoop, B. Ursin, “A Discontinuous Galerkin Method for Modelling Marine Controlled Source Electromagnetic Data”, Proceedings of the Project Review, Geo-Mathematical Imaging Group, v. 1, Purdue University, West Lafayette, IN, 2013, 75–102

[18] P. J. Matuszyk, L. F. Demkowicz, Parametric Finite Elements, Exact Sequences, and Perfectly Matched Layers, ICES REPORT 11-41, The Institute for Computational Engineering and Sciences, the University of Texas at Austin, November 2011 | MR

[19] O. Nechaev, E. Shurina, M. Botchev, “Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation”, Comp. Math. with Appl., 55:10 (2008), 2346–2362 | DOI | MR | Zbl