Keywords: Lipschitz condition, Monte Carlo method, quasi-Monte Carlo method, the average dimension.
@article{MM_2017_29_2_a10,
author = {I. M. Sobol},
title = {On numerical methods for functions depending on a very large number of variables},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {135--138},
year = {2017},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a10/}
}
I. M. Sobol. On numerical methods for functions depending on a very large number of variables. Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 135-138. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a10/
[1] Dzh. Traub, Kh. Vozhniakovskii, Obshchaia teoriia optimalnykh algoritmov, Mir, M., 1983
[2] S. M. Nikolskii, Kvadraturnye formuly, Fizmatgiz, M., 1958
[3] I. M. Sobol, “Determination of the extremal values of a function of several variables Satisfying a generalized Lipschitz condition”, USSR Computational Mathematics and Mathematical Physics, 28:2 (1988), 112–118 | DOI | Zbl
[4] I. M. Sobol, “Quadrature formulae for functions of several variables satisfying a general Lipschitz condition”, USSR Computational Math. and Mathematical Physics, 29:3 (1989), 201–206 | DOI | MR | Zbl
[5] I. M. Sobol', D. Asotsky, A. Kreinin, S. Kucherenko, “Construction and comparison of high-dimensional Sobol' generators”, Wilmott Mag., 2011:56 (2011), 64–79 | DOI
[6] R. Liu, A. B. Owen, “Estimating mean dimensionality of analysis of variance decompositions”, J. Amer. Statist. Assoc., 101:474 (2006), 712–721 | DOI | MR | Zbl
[7] D. Asotsky, E. Myshetskaya, I. M. Sobol', “The average dimension of a multidimensional function for quasi-Monte Carlo estimates of an integral”, Comp. Math. Math. Phys., 46:12 (2006), 2061–2067 | DOI | MR
[8] A. B. Owen, Variance components and generalized Sobol' indices, Technical report, Stanford University, 2012 | MR
[9] I. M. Sobol', B. V. Shukhman, “Quasi-Monte Carlo: A high-dimensional experiment”, Monte Carlo Methods Appl., 20:3 (2014), 167–171 | DOI | MR | Zbl
[10] B. V. Shukhman, I. M. Sobol', “A limit theorem for average dimensions”, Monte Carlo Methods Appl., 21:2 (2015), 175–178 | DOI | MR | Zbl