A model of information warfare in a society under periodic destabilizing effect
Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a model of information warfare in a society when one of competitors periodically destabilizes the system with short abrupt increasing of intensity of media propaganda. The model takes the form of two nonlinear ordinary differential equations with periodic discontinuous right-hand side. Asymptotics of periodic solutions is built in the case of low-intensity dissemination of information through interpersonal communication. The transient regime is investigated numerically.
Keywords: mathematical modeling, information warfare, media propaganda, interpersonal communication, differential equations.
@article{MM_2017_29_2_a1,
     author = {A. P. Mikhailov and A. P. Petrov and O. G. Proncheva and N. A. Marevtseva},
     title = {A model of information warfare in a society under periodic destabilizing effect},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a1/}
}
TY  - JOUR
AU  - A. P. Mikhailov
AU  - A. P. Petrov
AU  - O. G. Proncheva
AU  - N. A. Marevtseva
TI  - A model of information warfare in a society under periodic destabilizing effect
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 23
EP  - 32
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_2_a1/
LA  - ru
ID  - MM_2017_29_2_a1
ER  - 
%0 Journal Article
%A A. P. Mikhailov
%A A. P. Petrov
%A O. G. Proncheva
%A N. A. Marevtseva
%T A model of information warfare in a society under periodic destabilizing effect
%J Matematičeskoe modelirovanie
%D 2017
%P 23-32
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_2_a1/
%G ru
%F MM_2017_29_2_a1
A. P. Mikhailov; A. P. Petrov; O. G. Proncheva; N. A. Marevtseva. A model of information warfare in a society under periodic destabilizing effect. Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 23-32. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a1/

[1] A. A. Samarskii, A. P. Mikhailov, Matematicheskoe modelirovanie, Fizmatlit, M., 2006, 320 pp.

[2] A. P. Mikhailov, N. V. Kliusov, “O svoistvah prosteishei matematicheskoi modeli rasprostraneniia informatsionnoi ugrozy”, Matematicheskoe modelirovanie sotsialnykh protsessov, 4, Maks Press, M., 2002, 115–123 | Zbl

[3] A. P. Mikhailov, K. V. Izmodenova, “Ob optimalnom upravlenii protsessom rasprostraneniia informatsii”, Matematicheskoe modelirovanie, 17:5 (2005), 67–76 | Zbl

[4] A. P. Mikhailov, K. V. Izmodenova, “Ob optimalnom upravlenii v matematicheskoi modeli rasprostraneniia informatsii”, Matematicheskoe modelirovanie sotsialnykh protsessov, 6, Maks Press, M., 2004

[5] A. P. Mikhailov, A. P. Petrov, N. A. Marevtseva, I. V. Tretiakova, “Development of a Model of Information Dissemination in Society”, Mathematical Models and Computer Simulations, 6:5 (2014), 535–541 | DOI | MR | Zbl

[6] N. A. Marevtseva, “Prosteishie matematicheskie modeli informatsionnogo protivoborstva”, Sb. trudov Vrerossiiskikh nauchnykh molodezhnykh shkol, Matematicheskoe modelirovanie i sovremennye informatsionnye tekhnologii, 8, Izd-vo Iuzhnogo federalnogo universiteta, Rostov-na-Donu, 2009, 354–363

[7] A. P. Mikhailov, N. A. Marevtseva, “Models of information warfare”, Mathematical Models Computer Simulations, 4:3 (2011), 251–259 | DOI | Zbl

[8] A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, N. A. Marevtseva, “Mathematical Modeling of Information Warfare in a Society”, Mediterranean Journal of Social Sciences, 6:5(S2) (2015), 27–35

[9] A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, N. A. Marevtseva, “Matematicheskoe modelirovanie informatsionnogo protivoborstva v sotsiume”, Mezhdunarodnyi ekonomicheskii simpozium-2015, Sb. Mezhdunarodnykh nauchnykh konferentsii, posviashchennykh 75-letiiu ekonomicheskogo fakulteta Sankt-Peterburgskogo gosugarstvennogo universiteta, OOO “Skifiiaprint”, S.-Peterburg, 2015, 293–303

[10] D. J. Daley, D. G. Kendall, “Stochastic Rumors”, Journal of the Institute of Mathematics and its Applications, 1 (1964), 42–55 | DOI | MR

[11] D. P. Maki, M. Thompson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973 | MR

[12] Guanghua Chen, H. Shen, T. Ye, G. Chen, N. Kerr, “A Kinetic Model for the Spread of Rumor in Emergencies”, Discrete Dynamics in Nature and Society, 2013 (2013), 605854, 8 pp. | DOI | MR

[13] V. A. Shvedovskii, “Modelirovanie rasprostraneniia informatsii v smezhnykh sotsialnykh gruppax”, Matematicheskie metody v sotsiologicheskom issledovanii, Nauka, M., 1981, 207–214

[14] A. P. Petrov, A. I. Maslov, N. A. Tsaplin, “Modeling position selection by individuals during information warfare in society”, Mathematical Models and Computer Simulations, 8:4 (2016), 401–408 | DOI | Zbl

[15] N. Rashevsky, “Outline of a Physico-mathematical Theory of Excitation and Inhibition”, Protoplasma, 1933

[16] N. Rashevsky, Mathematical Biophysics: Physico-Mathematical Foundations of Biology, Univ. of Chicago Press, 1938 | MR

[17] M. Nekovee, Y. Moreno, G. Bianconi, M. Marsili, “Theory of Rumour Spreading in Complex Social Networks”, Physica A, 374 (2007), 457–470 | DOI

[18] D. A. Gubanov, D. A. Novikov, A. G. Chkhartishvili, Sotsialnye seti: modeli informatsionnogo vliianiia, upravleniia i protivoborstva, Fizmatlit, M., 2010, 228 pp.

[19] D. Yanagizawa-Drott, “Propaganda and Conflict: Evidence from the Rwandan Genocide”, The Quarterly J. of Economics, 129:4 (2014), 1947–1994 | DOI

[20] F. M. Bass, “A new product growth for model consumer durables”, Management Science, 15 (1969), 215–227 | DOI | Zbl

[21] L. L. Delitsin, Kolichestvennye modeli rasprostraneniia novovvedenii v sfere informatsionnykh i telekommunikatsionnykh tekhnologii, MGUKI, M., 2009, 106 pp.

[22] A. P. Mikhailov, A. P. Petrov, M. I. Kalinichenko, S. V. Polyakov, “Modeling the Simultaneous Distribution of Legal and Counterfeit Copies of Innovative Products”, Mathematical Models and Computer Simulations, 6:1 (2014), 25–31 | DOI | MR | Zbl

[23] G. B. Pronchev, V. I. Muravev, “Socialnye seti kak faktor perekhoda Rossii k innovacionnomu razvitiyu”, Sociologiya, 2011, no. 3, 36–56