Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_2_a1, author = {A. P. Mikhailov and A. P. Petrov and O. G. Proncheva and N. A. Marevtseva}, title = {A model of information warfare in a society under periodic destabilizing effect}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {23--32}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a1/} }
TY - JOUR AU - A. P. Mikhailov AU - A. P. Petrov AU - O. G. Proncheva AU - N. A. Marevtseva TI - A model of information warfare in a society under periodic destabilizing effect JO - Matematičeskoe modelirovanie PY - 2017 SP - 23 EP - 32 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_2_a1/ LA - ru ID - MM_2017_29_2_a1 ER -
%0 Journal Article %A A. P. Mikhailov %A A. P. Petrov %A O. G. Proncheva %A N. A. Marevtseva %T A model of information warfare in a society under periodic destabilizing effect %J Matematičeskoe modelirovanie %D 2017 %P 23-32 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_2_a1/ %G ru %F MM_2017_29_2_a1
A. P. Mikhailov; A. P. Petrov; O. G. Proncheva; N. A. Marevtseva. A model of information warfare in a society under periodic destabilizing effect. Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 23-32. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a1/
[1] A. A. Samarskii, A. P. Mikhailov, Matematicheskoe modelirovanie, Fizmatlit, M., 2006, 320 pp.
[2] A. P. Mikhailov, N. V. Kliusov, “O svoistvah prosteishei matematicheskoi modeli rasprostraneniia informatsionnoi ugrozy”, Matematicheskoe modelirovanie sotsialnykh protsessov, 4, Maks Press, M., 2002, 115–123 | Zbl
[3] A. P. Mikhailov, K. V. Izmodenova, “Ob optimalnom upravlenii protsessom rasprostraneniia informatsii”, Matematicheskoe modelirovanie, 17:5 (2005), 67–76 | Zbl
[4] A. P. Mikhailov, K. V. Izmodenova, “Ob optimalnom upravlenii v matematicheskoi modeli rasprostraneniia informatsii”, Matematicheskoe modelirovanie sotsialnykh protsessov, 6, Maks Press, M., 2004
[5] A. P. Mikhailov, A. P. Petrov, N. A. Marevtseva, I. V. Tretiakova, “Development of a Model of Information Dissemination in Society”, Mathematical Models and Computer Simulations, 6:5 (2014), 535–541 | DOI | MR | Zbl
[6] N. A. Marevtseva, “Prosteishie matematicheskie modeli informatsionnogo protivoborstva”, Sb. trudov Vrerossiiskikh nauchnykh molodezhnykh shkol, Matematicheskoe modelirovanie i sovremennye informatsionnye tekhnologii, 8, Izd-vo Iuzhnogo federalnogo universiteta, Rostov-na-Donu, 2009, 354–363
[7] A. P. Mikhailov, N. A. Marevtseva, “Models of information warfare”, Mathematical Models Computer Simulations, 4:3 (2011), 251–259 | DOI | Zbl
[8] A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, N. A. Marevtseva, “Mathematical Modeling of Information Warfare in a Society”, Mediterranean Journal of Social Sciences, 6:5(S2) (2015), 27–35
[9] A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, N. A. Marevtseva, “Matematicheskoe modelirovanie informatsionnogo protivoborstva v sotsiume”, Mezhdunarodnyi ekonomicheskii simpozium-2015, Sb. Mezhdunarodnykh nauchnykh konferentsii, posviashchennykh 75-letiiu ekonomicheskogo fakulteta Sankt-Peterburgskogo gosugarstvennogo universiteta, OOO “Skifiiaprint”, S.-Peterburg, 2015, 293–303
[10] D. J. Daley, D. G. Kendall, “Stochastic Rumors”, Journal of the Institute of Mathematics and its Applications, 1 (1964), 42–55 | DOI | MR
[11] D. P. Maki, M. Thompson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973 | MR
[12] Guanghua Chen, H. Shen, T. Ye, G. Chen, N. Kerr, “A Kinetic Model for the Spread of Rumor in Emergencies”, Discrete Dynamics in Nature and Society, 2013 (2013), 605854, 8 pp. | DOI | MR
[13] V. A. Shvedovskii, “Modelirovanie rasprostraneniia informatsii v smezhnykh sotsialnykh gruppax”, Matematicheskie metody v sotsiologicheskom issledovanii, Nauka, M., 1981, 207–214
[14] A. P. Petrov, A. I. Maslov, N. A. Tsaplin, “Modeling position selection by individuals during information warfare in society”, Mathematical Models and Computer Simulations, 8:4 (2016), 401–408 | DOI | Zbl
[15] N. Rashevsky, “Outline of a Physico-mathematical Theory of Excitation and Inhibition”, Protoplasma, 1933
[16] N. Rashevsky, Mathematical Biophysics: Physico-Mathematical Foundations of Biology, Univ. of Chicago Press, 1938 | MR
[17] M. Nekovee, Y. Moreno, G. Bianconi, M. Marsili, “Theory of Rumour Spreading in Complex Social Networks”, Physica A, 374 (2007), 457–470 | DOI
[18] D. A. Gubanov, D. A. Novikov, A. G. Chkhartishvili, Sotsialnye seti: modeli informatsionnogo vliianiia, upravleniia i protivoborstva, Fizmatlit, M., 2010, 228 pp.
[19] D. Yanagizawa-Drott, “Propaganda and Conflict: Evidence from the Rwandan Genocide”, The Quarterly J. of Economics, 129:4 (2014), 1947–1994 | DOI
[20] F. M. Bass, “A new product growth for model consumer durables”, Management Science, 15 (1969), 215–227 | DOI | Zbl
[21] L. L. Delitsin, Kolichestvennye modeli rasprostraneniia novovvedenii v sfere informatsionnykh i telekommunikatsionnykh tekhnologii, MGUKI, M., 2009, 106 pp.
[22] A. P. Mikhailov, A. P. Petrov, M. I. Kalinichenko, S. V. Polyakov, “Modeling the Simultaneous Distribution of Legal and Counterfeit Copies of Innovative Products”, Mathematical Models and Computer Simulations, 6:1 (2014), 25–31 | DOI | MR | Zbl
[23] G. B. Pronchev, V. I. Muravev, “Socialnye seti kak faktor perekhoda Rossii k innovacionnomu razvitiyu”, Sociologiya, 2011, no. 3, 36–56