Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method
Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the numerical simulation of gasdynamic flows in areas with complex geometry it is necessary to use detailed unstructured grids and numerical methods of high accuracy. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach has several advantages inherent in both finite-element and finite-difference approximations. At the same time discontinuous Galerkin method has a significant computational complexity, so the corresponding implementation should efficiently use all available computational capacity. In order to speed up the calculations operator programming method was applied while creating the computational module. Operator programming method allows writing mathematical formulas in programs in compact form and helps to port the programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. Earlier the operator programming method was implemented for regular threedimensional Cartesian grids and tree-dimensional locally adaptive grids. In this work, the approach is applied to three-dimensional tetrahedron meshes. This demonstrates the possibility of implementation of the method on arbitrary tree-dimensional meshes. Besides, in this work we give the example of the usage of template metaptogramming methods of the C++ programming language to speed-up calculations.
Keywords: operator programming method, three-dimensional tetrahedral meshes, discontinuous Galerkin method, CUDA, template metaprogramming.
@article{MM_2017_29_2_a0,
     author = {M. M. Krasnov and P. A. Kuchugov and M. E. Ladonkina and V. F. Tishkin},
     title = {Discontinuous {Galerkin} method on three-dimensional tetrahedral meshes. {The} usage of the operator programming method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a0/}
}
TY  - JOUR
AU  - M. M. Krasnov
AU  - P. A. Kuchugov
AU  - M. E. Ladonkina
AU  - V. F. Tishkin
TI  - Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 3
EP  - 22
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_2_a0/
LA  - ru
ID  - MM_2017_29_2_a0
ER  - 
%0 Journal Article
%A M. M. Krasnov
%A P. A. Kuchugov
%A M. E. Ladonkina
%A V. F. Tishkin
%T Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method
%J Matematičeskoe modelirovanie
%D 2017
%P 3-22
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_2_a0/
%G ru
%F MM_2017_29_2_a0
M. M. Krasnov; P. A. Kuchugov; M. E. Ladonkina; V. F. Tishkin. Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method. Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 3-22. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a0/

[1] V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Parallelnyi mnogosetochnyi metod dlia raznostnykh ellipticheskikh uravnenii. Chast I. Osnovnye elementy algoritma”, Keldysh Institute preprints, 2012, 030, 32 pp.

[2] M. M. Krasnov, “Operatornaia biblioteka dlia reshenia trekhmernykh setochnykh zadach matematicheskoi fiziki s ispolzovaniem graficheskikh plat s arkhitekturoi CUDA”, Matematicheskoe modelirovanie, 27:3 (2015), 109–120

[3] NVidia CUDA, http://www.nvidia.com/object/cuda_home_new.html

[4] Intel Xeon Phi, http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html

[5] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl

[6] M. P. Galanin, E. B. Savenkov, S. A. Tokareva, “Primenenie razryvnogo metoda Galerkina dlia chislennogo resheniia kvazilineinogo uravneniia perenosa”, Keldysh Institute preprints, 2005, 105, 35 pp.

[7] M. E. Ladonkina, O. A. Nekliudova, V. F. Tishkin, “Issledovanie vliianiia limitera na poriadok tochnosti resheniia razryvnym metodom Galerkina”, Keldysh Institute preprints, 2012, 034, 31 pp.

[8] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, Math. Mod. and Comp. Simulations, 5:4 (2013), 346–349 | DOI | MR | Zbl

[9] M. E. Ladonkina, O. A. Nekliudova, V. F. Tishkin, “Limiter povyshennogo poriadka tochnosti dlia razryvnogo metoda Galerkina na treugolnykh setkakh”, Keldysh Institute preprints, 2013, 053, 26 pp.

[10] L. Krivodonova, “Limiters for high-order discontinuous Galerkin methods”, Journal of Computational Physics, 226 (2007), 879–896 | DOI | MR | Zbl

[11] A. V. Volkov, Metod chislennogo issledovania obtekania prostranstvennikh konfiguratsii putem resheniia uravnenii Navie–Stoksa na osnove skhem visokogo poriadka tochnosti, Dissertation, M., 2010

[12] V. V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Computational Mathematics and Mathematical Physics, 1:2 (1962), 304–320 | DOI | MR

[13] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | DOI | MR | Zbl

[14] I. P. Misovskikh, Interpoliatsionnie kubaturnie formuli, Nauka, M., 1981

[15] B. Q. Li, Discontinuous finite elements in fluid dynamics and heat transfer, Springer, 2006 | MR | Zbl

[16] D. Abrahams, A. Gurtovoy, C++ Template Metaprogramming, Addison-Wesley, 2004 | MR

[17] Curiously recurring template pattern, http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

[18] Boost C++ Libraries, http://www.boost.org/

[19] V. T. Zhukov, M. M. Krasnov, N. D. Novikova, O. B. Feodoritova, “Multigrid effectiveness on modern computing architectures”, Programming and computer software, 41:1 (2015), 14–22 | DOI

[20] V. T. Zhukov, M. M. Krasnov, N. D. Novikova, O. B. Feodoritova, “Chislennoe reshenie parabolicheskikh uravnenii na lokalno-adaptivnykh setkakh chebyshevskim metodom”, Keldysh Institute preprints, 2015, 087, 26 pp.

[21] S.-M. Chang, K.-S. Chang, “On the shock-vortex interaction in Schardin's problem”, Shock Waves, 10 (2000), 333–343 | DOI

[22] A. Chaudhuri, A. Hadjadj, A. Chinnayya, “On the use of immersed boundary methods for shock/obstacle interactions”, J. of Comp. Phys., 230 (2011), 1731–1748 | DOI | MR | Zbl

[23] C.-W. Shu, “TVB uniformly high-order schemes for conservation laws”, Mathematics of Computation, 49 (1987), 105–121 | DOI | MR | Zbl