Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_2_a0, author = {M. M. Krasnov and P. A. Kuchugov and M. E. Ladonkina and V. F. Tishkin}, title = {Discontinuous {Galerkin} method on three-dimensional tetrahedral meshes. {The} usage of the operator programming method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--22}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a0/} }
TY - JOUR AU - M. M. Krasnov AU - P. A. Kuchugov AU - M. E. Ladonkina AU - V. F. Tishkin TI - Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method JO - Matematičeskoe modelirovanie PY - 2017 SP - 3 EP - 22 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_2_a0/ LA - ru ID - MM_2017_29_2_a0 ER -
%0 Journal Article %A M. M. Krasnov %A P. A. Kuchugov %A M. E. Ladonkina %A V. F. Tishkin %T Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method %J Matematičeskoe modelirovanie %D 2017 %P 3-22 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_2_a0/ %G ru %F MM_2017_29_2_a0
M. M. Krasnov; P. A. Kuchugov; M. E. Ladonkina; V. F. Tishkin. Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method. Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 3-22. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a0/
[1] V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Parallelnyi mnogosetochnyi metod dlia raznostnykh ellipticheskikh uravnenii. Chast I. Osnovnye elementy algoritma”, Keldysh Institute preprints, 2012, 030, 32 pp.
[2] M. M. Krasnov, “Operatornaia biblioteka dlia reshenia trekhmernykh setochnykh zadach matematicheskoi fiziki s ispolzovaniem graficheskikh plat s arkhitekturoi CUDA”, Matematicheskoe modelirovanie, 27:3 (2015), 109–120
[3] NVidia CUDA, http://www.nvidia.com/object/cuda_home_new.html
[4] Intel Xeon Phi, http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
[5] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl
[6] M. P. Galanin, E. B. Savenkov, S. A. Tokareva, “Primenenie razryvnogo metoda Galerkina dlia chislennogo resheniia kvazilineinogo uravneniia perenosa”, Keldysh Institute preprints, 2005, 105, 35 pp.
[7] M. E. Ladonkina, O. A. Nekliudova, V. F. Tishkin, “Issledovanie vliianiia limitera na poriadok tochnosti resheniia razryvnym metodom Galerkina”, Keldysh Institute preprints, 2012, 034, 31 pp.
[8] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, Math. Mod. and Comp. Simulations, 5:4 (2013), 346–349 | DOI | MR | Zbl
[9] M. E. Ladonkina, O. A. Nekliudova, V. F. Tishkin, “Limiter povyshennogo poriadka tochnosti dlia razryvnogo metoda Galerkina na treugolnykh setkakh”, Keldysh Institute preprints, 2013, 053, 26 pp.
[10] L. Krivodonova, “Limiters for high-order discontinuous Galerkin methods”, Journal of Computational Physics, 226 (2007), 879–896 | DOI | MR | Zbl
[11] A. V. Volkov, Metod chislennogo issledovania obtekania prostranstvennikh konfiguratsii putem resheniia uravnenii Navie–Stoksa na osnove skhem visokogo poriadka tochnosti, Dissertation, M., 2010
[12] V. V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Computational Mathematics and Mathematical Physics, 1:2 (1962), 304–320 | DOI | MR
[13] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | DOI | MR | Zbl
[14] I. P. Misovskikh, Interpoliatsionnie kubaturnie formuli, Nauka, M., 1981
[15] B. Q. Li, Discontinuous finite elements in fluid dynamics and heat transfer, Springer, 2006 | MR | Zbl
[16] D. Abrahams, A. Gurtovoy, C++ Template Metaprogramming, Addison-Wesley, 2004 | MR
[17] Curiously recurring template pattern, http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
[18] Boost C++ Libraries, http://www.boost.org/
[19] V. T. Zhukov, M. M. Krasnov, N. D. Novikova, O. B. Feodoritova, “Multigrid effectiveness on modern computing architectures”, Programming and computer software, 41:1 (2015), 14–22 | DOI
[20] V. T. Zhukov, M. M. Krasnov, N. D. Novikova, O. B. Feodoritova, “Chislennoe reshenie parabolicheskikh uravnenii na lokalno-adaptivnykh setkakh chebyshevskim metodom”, Keldysh Institute preprints, 2015, 087, 26 pp.
[21] S.-M. Chang, K.-S. Chang, “On the shock-vortex interaction in Schardin's problem”, Shock Waves, 10 (2000), 333–343 | DOI
[22] A. Chaudhuri, A. Hadjadj, A. Chinnayya, “On the use of immersed boundary methods for shock/obstacle interactions”, J. of Comp. Phys., 230 (2011), 1731–1748 | DOI | MR | Zbl
[23] C.-W. Shu, “TVB uniformly high-order schemes for conservation laws”, Mathematics of Computation, 49 (1987), 105–121 | DOI | MR | Zbl