Heat transfer process in an elliptic channel
Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 84-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the problem of heat transfer in the elliptic channel with its axis parallel to the temperature gradient. As the basic equation, that describes the kinetics of the process, the Williams kinetic equation, and as a boundary condition on the wall of the channel — a model of diffuse reflection are used. The deviation from the equilibrium state of the gas is assumed small. In order to find a linear correction to the local equilibrium distribution function the problem is reduced to solving a linear homogeneous differential equation of the first order. It’s solution is constructed using the method of characteristics. An analytical method for calculating the heat flux of rarefied gas through a cross section in the elliptic channel by the using a simple numerical procedures, which are realized in the system of computer algebra of Maple 17, is presented. A comparison with analogical results presented in the open data is done.
Keywords: the gas flow in the channel, a model kinetic equation, analytical solutions, method of characteristics.
@article{MM_2017_29_1_a5,
     author = {O. Germider and V. N. Popov and A. A. Yushkanov},
     title = {Heat transfer process in an elliptic channel},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {84--94},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_1_a5/}
}
TY  - JOUR
AU  - O. Germider
AU  - V. N. Popov
AU  - A. A. Yushkanov
TI  - Heat transfer process in an elliptic channel
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 84
EP  - 94
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_1_a5/
LA  - ru
ID  - MM_2017_29_1_a5
ER  - 
%0 Journal Article
%A O. Germider
%A V. N. Popov
%A A. A. Yushkanov
%T Heat transfer process in an elliptic channel
%J Matematičeskoe modelirovanie
%D 2017
%P 84-94
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_1_a5/
%G ru
%F MM_2017_29_1_a5
O. Germider; V. N. Popov; A. A. Yushkanov. Heat transfer process in an elliptic channel. Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 84-94. http://geodesic.mathdoc.fr/item/MM_2017_29_1_a5/

[1] Sharipov F. M., Seleznev V. D., “Data on Internal Rarefied Gas Flows”, J. Phys. Chem. Ref. Data, 27:3 (1998), 657–706 | DOI

[2] Koshmarov Y. A., Ryzhov Y. A., Prikladnaia dinamika razrezhennogo gaza, Mashinostroenie, M., 1977, 184 pp.

[3] Kogan M. N., Rarefied Gas Dynamics, Plenum Press, New York, 1969, 515 pp.

[4] Siewert S. E., “The linearized Boltzmann Equation: Concise and Accurate Solutions to Basic Flow Problems”, Zeitschrift fur Angewandte Mathematic und Physik, 54 (2003), 273–303 | DOI | MR | Zbl

[5] Popov V., Yushkanov A., Lukashev V., Mathematical modeling of the transport processes in the channels, Monograph, LAP LAMBERT Academic publishing GmbH Co. KG, Saarbrucken, Germany, 2014, 116 pp.

[6] Titarev V. A., Shakhov E. M., “A higher-order conservative method for computing the Poiseuille flow of a rarefied gas in a channel of arbitrary cross section”, Comp. Math. Math. Phys., 50:3 (2010), 563–574 | MR | Zbl | Zbl

[7] Naris S., Valougeorgis D., “Rarefied gas flow in a triangular duct based on a boundary fitted lattice”, European Journal of Mechanics B/Fluids, 27 (2008), 810–822 | DOI | MR | Zbl

[8] Siewert C. E., Valougeorgis D., “An analytical discrete-ordinates solution of the S-model kinetic equations for flow in a cylindrical tube”, Journal of Quantitative Spectroscopy Radiative Transfer, 72 (2002), 531–550 | DOI

[9] Taheri P., Bahrami M., “Macroscopic description of nonequilibrium effects in thermal transpiration flows in annular microchannels”, Physical Review, 86 (2012), 1–9

[10] Kamphorst C. H., Rodrigues P., Barichello L. B., “A Closed-Form Solution of a Kinetic Integral Equation for Rarefied Gas Flow in a Cylindrical Duct”, Applied Mathematics, 5 (2014), 1516–1527 | DOI

[11] Titarev V. A., Shakhov E. M., “Numerical analysis of the spiral Couette flow of a rarefied gas between coaxial cylinders”, Comp. Math. Math. Phys., 46:3 (2006), 505–513 | DOI | MR | Zbl

[12] Graur I., Sharipov F., “Gas flow through an elliptical tube over the whole range of the gas rarefaction”, European Journal of Mechanics V Fluids, 27 (2008), 335–345 | DOI | MR | Zbl

[13] Cercignani C., Mathematical Methods in Kinetic Theory, Plenum Press, New York, 1969, 227 pp. | MR | Zbl

[14] Cercignani C., “The method of elementary solutions for kinetic models with velocity-dependent collision frequency”, Annals of Physics, 40:3 (1966), 469–481 | DOI | MR

[15] Loyalka S. K., Ferziger J. H., “Model Dependence of the Slip Coefficient”, Phys. Fluids, 10 (1967), 1833–1839 | DOI | Zbl

[16] Gulakova S. V., Popov V. N., “Analytic Solution to the Williams Equation in the Poiseuille Flow Problem Using Mirror-Diffuse Model of Interaction of Gas Molecules with the Channel Walls”, Technical Physics, 60:4 (2015), 477–482 | DOI

[17] Gulakova S. V., Popov V. N., “Analytical Solution of the Couette Flow Problem for Arbitrary Values of the Knudsen Number”, Journal of Engineering Physics and Thermophysics, 87:4 (2014), 988–996 | DOI

[18] Gulakova S. V., Popov V. N., “Reshenie uravneniia Viliamsa v zadache Kramersa s ispolzovaniem zerkalno-diffuznogo granichnogo usloviia Maksvella”, Vestnik Severnogo (Arkticheskogo) federalnogo universiteta. Seriia «Estestvennye nauki», 2014, no. 4, 130–137

[19] Germider O. V., Popov V. N., Yushkanov A. A., “Matematicheskoe modelirovanie protsessa perenosa v dlinnom tsilindricheskom kanale”, Zhurnal Srednevolzhskjgo Matematicheskogo obshchestva, 17:1 (2015), 22–29 | Zbl

[20] Latyshev A. V., Yushkanov A. A., Kineticheskie uravneniia tipa Williamsa i ich tochnye reshenia, MGOU, M., 2004, 271 pp.

[21] Courant R., Partial Differential Equations, Interscience Publ., New York–London, 1962, 830 pp. | Zbl