Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_1_a3, author = {T. G. Elizarova and D. S. Saburin}, title = {Application of the regularized shallow water equations for numerical simulation of casavie fluctuations in the {Azov} sea}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {45--62}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_1_a3/} }
TY - JOUR AU - T. G. Elizarova AU - D. S. Saburin TI - Application of the regularized shallow water equations for numerical simulation of casavie fluctuations in the Azov sea JO - Matematičeskoe modelirovanie PY - 2017 SP - 45 EP - 62 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_1_a3/ LA - ru ID - MM_2017_29_1_a3 ER -
%0 Journal Article %A T. G. Elizarova %A D. S. Saburin %T Application of the regularized shallow water equations for numerical simulation of casavie fluctuations in the Azov sea %J Matematičeskoe modelirovanie %D 2017 %P 45-62 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_1_a3/ %G ru %F MM_2017_29_1_a3
T. G. Elizarova; D. S. Saburin. Application of the regularized shallow water equations for numerical simulation of casavie fluctuations in the Azov sea. Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 45-62. http://geodesic.mathdoc.fr/item/MM_2017_29_1_a3/
[1] S. F. Dotsenko, V. A. Ivanov, Prirodnye katastrofy Azovsko-Chernomorskogo regiona, NAN Ukrainy, Morskoi gidrofizitseslii institut, Sevastopol, 2010
[2] V. B. Zalesny, A. V. Gusev, S. N. Moshonkin, “Numerical model of the hydrodynamics of the Black Sea and the Sea of Azov with variational initialization of temperature and salinity”, Izv. Atmos. Ocean. Phys., 49:6 (2013), 642–658 | DOI | DOI
[3] V. V. Zalesny, N. A. Diansky, V. V. Fomin et al., “Numerical model of the circulation of the Black Sea and the Sea of Azov”, Russian Journal of Numerical Analysis and Mathematical Modelling, 27:1 (2012), 95–111 | DOI
[4] V. V. Fomin, A. A. Polozok, R. V. Kamyshnikov, “Wave and storm surge modelling for Sea of Azov with use of swan+adcirc”, Geoinformation Sciences and Environmental Development: New Approaches, Methods, Technologies, Collection of articles of the II Internati (Limassol, Cyprus, 2014), Rostov-on-Don, 2014, 111–116
[5] G. G. Matishov, Yu. I. Inzhebeikin, “Numerical study of the Azov Sea level seiche oscillations”, Oceanology, 49:4 (2009), 445–452 | DOI
[6] Yu. G. Filippov, “Natural fluctuations of the Sea of Azov level”, Russian Meteorology and Hydrology, 2012, no. 37, 126–129 | DOI
[7] A. I. Sukhinov, A. E. Chistyakov, “Parallel implementation of a three-dimantional hydrodynamic model of shallow water basins on supercomputing systems”, Vychisl. Metody Programm., 13:1 (2012), 290–297
[8] L. A. Krukier, “Matematicheskoe modelirovanie gidrodinamiki Azovskogo moria pri realizatsii proektov rekonstruktsii ego ekosistemy”, Matem. model., 3:9 (1991), 3–20 | MR | Zbl
[9] http://oceanography.ru/index.php/ru/component/jdownloads/viewdownload/6-/69
[10] O. V. Bulatov, T. G. Elizarova, “Regularized shallow water equations and an efficient method for numerical simulation of shallow water flows”, Computational Mathematics and Mathematical Physics, 51:1 (2011), 160–173 | DOI | MR | Zbl
[11] O. V. Bulatov, T. G. Elizarova, “Regularized Shallow Water Equations for Numerical Simulation of Flows with a Moving Shoreline”, Comput. Math. and Mathem. Physics, 56:4 (2016), 661–679 | DOI | MR | Zbl
[12] T. G. Elizarova, D. S. Saburin, “Numerical Simulation of Fluid Oscillations in Fuel Tanks”, Mathematical Models and Computer Simulations, 5:5 (2013), 470–478 | DOI
[13] T. Elizarova, D. Saburin, “Mathematical modeling and visualization of the sloshing in the ice-breaker's tank after impact interaction with ice barrier”, Scientific Visualization, 5:4 (2014), 118–135
[14] T. G. Elizarova, M. A. Istomina, N. K. Shelkovnikov, “Numerical simulation of solitary wave generation in a wind-water annular tunnel”, Mathematical Models and Computer Simulations, 4:6 (2012), 552–559 | DOI | Zbl
[15] G. I. Marchuk, V. P. Dymnikov, V. B. Zalesny, Matematitseskie modeli v geofizitseskoi gidrodinamike i tsislennye metody ikh realizatsyi, Gigrometeoizdat, L., 1967, 296 pp. | MR
[16] N. A. Dianskii, Modelirovanie tsirkulytsyi okeana i issledovanie ego reaktsyi na korotkoperiodnye i dolgoperiodnye atmosfernye vozdeystvia, Fizmatlit, M., 2013, 271 pp.
[17] N. E. Voltsinger, R. V. Piaskjvckii, Teoria melkoi vody. Okeanologitseskie zadachi i chislennye metody, Gidrometeoizdat, L., 1977, 206 pp.
[18] T. G. Elizarova, Quasi-Gas Dynamic equations, Springer-Verlag, Berlin–Heidelberg, 2009, 286 pp. | MR | Zbl
[19] Yu. V. Sheretov, Dinamika sploshnih sred pri prostranstvenno-vremennom osrednenii, M.–Ishevsk, 2009, 400 pp.
[20] B. N. Chetverushkin, Kinetic schemes and quasi-gasdynamic system of equations, CIMNE, Barcelona, 2008
[21] A. A. Zlotnik, “Energy equalities and estimates for barotropic quasi-gasdynamic and quasi-hydrodynamic systems of equations”, Computational Mathematics and Mathematical Physics, 50:2 (2010), 310–321 | DOI | MR | Zbl
[22] Yu. V. Sheretov, Regularizovannie uravnenia gidrodinamiki, Tverskoy gos. universitet, Tver, 2016, 222 pp.