Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_1_a2, author = {S. P. Dudarov}, title = {Models of self-organizing artificial neural networks for determination of stationary permanent industrial sources of air pollution}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {33--44}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_1_a2/} }
TY - JOUR AU - S. P. Dudarov TI - Models of self-organizing artificial neural networks for determination of stationary permanent industrial sources of air pollution JO - Matematičeskoe modelirovanie PY - 2017 SP - 33 EP - 44 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_1_a2/ LA - ru ID - MM_2017_29_1_a2 ER -
%0 Journal Article %A S. P. Dudarov %T Models of self-organizing artificial neural networks for determination of stationary permanent industrial sources of air pollution %J Matematičeskoe modelirovanie %D 2017 %P 33-44 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_1_a2/ %G ru %F MM_2017_29_1_a2
S. P. Dudarov. Models of self-organizing artificial neural networks for determination of stationary permanent industrial sources of air pollution. Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/MM_2017_29_1_a2/
[1] A. F. Egorov, T. V. Savitskaya, S. P. Dudarov, “Ispolzovanie iskusstvennykh neyronnykh setey dlia identifikatsii promyshlennykh istochnikov zagriazneniia atmosfernogo vozdukha. Chast 1. Identifikatsiia organizovannykh postoianno deystvuiushchikh istochnikov zagriazneniia”, Khimicheskaia promyshlennost segodnia, 2004, no. 6, 39–45
[2] V. V. Pluzhnikov, S. P. Dudarov, “Identifikatsiia postoianno deystvuiushchikh istochnikov zagriazneniia khimicheskikh proizvodstv s pomoshchiu samoorganizuiushchikhsia kart”, Uspekhi khimii i chimicheskoy tekhnologii, 13:1(94) (2009), 16–20
[3] S. P. Dudarov, P. L. Papaev, Teoreticheskie osnovy i prakticheskoe primenenie iskusstvennykh neyronnykh setey, Ucheb. posobie, RKhTU im. D.I. Mendeleeva, M., 2014, 104 pp.
[4] T. Kohonen, “Improved Versions of Learning Vector Quantization”, IEEE International Joint Conference on Neural Networks (San Diego, CA, 1990), v. 1, 545–550
[5] T. Kohonen, Self-Organizing Maps, Springer, Berlin–Heidelberg–New York–Barcelona–Hong Kong–London–Milan–Paris–Singapore–Tokyo, 2001, 501 pp. | MR | Zbl
[6] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd edition, Prentice Hall, NJ, USA, 1999, 823 pp.
[7] P. D. Wasserman, Neural Computing. Theory and Practice, Van Nostrand Reinhold, NY, USA, 1989, 230 pp.
[8] G. A. Carpenter, S. Grossberg, “ART 2: Self-Organization of Stable Category Recognition Codes for Analog Input Patterns”, Applied Optics, 26:2 (1987), 4919–4930 | DOI
[9] S. P. Dudarov, A. F. Egorov, T. V. Savitskaya, S. A. Levushkina, “Uchebnyy programmnyy modul rascheta kontsentratsii vrednykh veshchestv v atmosfernom vozdukhe”, Bezopasnost v tekhnosfere, 2008, no. 1, 53–56
[10] Metodika rascheta kontsentratsiy v atmosfernom vozdukhe vrednykh veshchestv, soderzhashchikhsia v vybrosakh predpriiatiy, Obshchesoiuznyy normativnyy dokument (OND-86), Gidrometeoizdat, L., 1987, 93 pp.