Models of self-organizing artificial neural networks for determination of stationary permanent industrial sources of air pollution
Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered a problem of determination of one particular or few possible pollution sources are responsible on air medium quality violation as result of the norm of maximum permissible emission excess. It is solved a model task for a group of spatially separated stationary permanent industrial sources in the work. It is presented an determination task statement and a method of its solution by two architectures of artificial neural networks: Kohonen’s networks for learning vector quantization with fixed and adaptive structures as well as adaptive resonance theory network for analog inputs (ART-2). The method consists of data clustering which is supplied by self-learning algorithms (learning without a teacher). It is given estimation equations, it is described operation algorithms of Kohonen's and adaptive resonance theory networks at different life cycle stages. It is carried on a comparative analysis of model task solution results received by each of networks.
Keywords: artificial neural network, Kohonen's neural network, learning vector quantization, adaptive resonance theory network, self-learning, self-organizing, clustering, cluster analysis, determination of free air pollution sources.
@article{MM_2017_29_1_a2,
     author = {S. P. Dudarov},
     title = {Models of self-organizing artificial neural networks for determination of stationary permanent industrial sources of air pollution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_1_a2/}
}
TY  - JOUR
AU  - S. P. Dudarov
TI  - Models of self-organizing artificial neural networks for determination of stationary permanent industrial sources of air pollution
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 33
EP  - 44
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_1_a2/
LA  - ru
ID  - MM_2017_29_1_a2
ER  - 
%0 Journal Article
%A S. P. Dudarov
%T Models of self-organizing artificial neural networks for determination of stationary permanent industrial sources of air pollution
%J Matematičeskoe modelirovanie
%D 2017
%P 33-44
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_1_a2/
%G ru
%F MM_2017_29_1_a2
S. P. Dudarov. Models of self-organizing artificial neural networks for determination of stationary permanent industrial sources of air pollution. Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 33-44. http://geodesic.mathdoc.fr/item/MM_2017_29_1_a2/

[1] A. F. Egorov, T. V. Savitskaya, S. P. Dudarov, “Ispolzovanie iskusstvennykh neyronnykh setey dlia identifikatsii promyshlennykh istochnikov zagriazneniia atmosfernogo vozdukha. Chast 1. Identifikatsiia organizovannykh postoianno deystvuiushchikh istochnikov zagriazneniia”, Khimicheskaia promyshlennost segodnia, 2004, no. 6, 39–45

[2] V. V. Pluzhnikov, S. P. Dudarov, “Identifikatsiia postoianno deystvuiushchikh istochnikov zagriazneniia khimicheskikh proizvodstv s pomoshchiu samoorganizuiushchikhsia kart”, Uspekhi khimii i chimicheskoy tekhnologii, 13:1(94) (2009), 16–20

[3] S. P. Dudarov, P. L. Papaev, Teoreticheskie osnovy i prakticheskoe primenenie iskusstvennykh neyronnykh setey, Ucheb. posobie, RKhTU im. D.I. Mendeleeva, M., 2014, 104 pp.

[4] T. Kohonen, “Improved Versions of Learning Vector Quantization”, IEEE International Joint Conference on Neural Networks (San Diego, CA, 1990), v. 1, 545–550

[5] T. Kohonen, Self-Organizing Maps, Springer, Berlin–Heidelberg–New York–Barcelona–Hong Kong–London–Milan–Paris–Singapore–Tokyo, 2001, 501 pp. | MR | Zbl

[6] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd edition, Prentice Hall, NJ, USA, 1999, 823 pp.

[7] P. D. Wasserman, Neural Computing. Theory and Practice, Van Nostrand Reinhold, NY, USA, 1989, 230 pp.

[8] G. A. Carpenter, S. Grossberg, “ART 2: Self-Organization of Stable Category Recognition Codes for Analog Input Patterns”, Applied Optics, 26:2 (1987), 4919–4930 | DOI

[9] S. P. Dudarov, A. F. Egorov, T. V. Savitskaya, S. A. Levushkina, “Uchebnyy programmnyy modul rascheta kontsentratsii vrednykh veshchestv v atmosfernom vozdukhe”, Bezopasnost v tekhnosfere, 2008, no. 1, 53–56

[10] Metodika rascheta kontsentratsiy v atmosfernom vozdukhe vrednykh veshchestv, soderzhashchikhsia v vybrosakh predpriiatiy, Obshchesoiuznyy normativnyy dokument (OND-86), Gidrometeoizdat, L., 1987, 93 pp.