On implicit Runge--Kutta methods received as a result of inversion of explicit methods
Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse methods for explicit Runge–Kutta methods are considered. Such methods have a number of advantages, but their drawback is the low (1st) stage order. It leads to reduction of real order when solving stiff and differential-algebraic equations. The new methods possessing properties of methods of higher stage order are offered. Results of numerical experiments show that the offered methods allow us to avoid an order reduction.
Keywords: inverse Runge–Kutta methods, stiff equations, differential-algebraic equations, order reduction phenomenon.
@article{MM_2017_29_1_a0,
     author = {L. M. Skvortsov},
     title = {On implicit {Runge--Kutta} methods received as a result of inversion of explicit methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_1_a0/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - On implicit Runge--Kutta methods received as a result of inversion of explicit methods
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 3
EP  - 19
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_1_a0/
LA  - ru
ID  - MM_2017_29_1_a0
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T On implicit Runge--Kutta methods received as a result of inversion of explicit methods
%J Matematičeskoe modelirovanie
%D 2017
%P 3-19
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_1_a0/
%G ru
%F MM_2017_29_1_a0
L. M. Skvortsov. On implicit Runge--Kutta methods received as a result of inversion of explicit methods. Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2017_29_1_a0/

[1] E. Hairer, G. Wanner, Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, Springer-Verlag, Berlin, 1996 | MR | Zbl

[2] J. C. Butcher, Numerical methods for ordinary differential equations, 2th edition, John Wiley Sons, Chichester, 2008, 463 pp. | MR | Zbl

[3] N. N. Kalitkin, I. P. Poshivailo, “Computations with inverse Runge–Kutta methods”, Mat. Models Comput. Simul., 6:3 (2014), 272–285 | DOI | MR | Zbl

[4] E. Hairer, S. P. Norsett, G. Wanner, Solving ordinary differential equations, v. I, Nonstiff problems, Springer-Verlag, Berlin, 1987 | MR | Zbl

[5] P. Muir, B. Owren, “Order barriers and characterizations for continuous mono-implicit Runge–Kutta schemes”, Math. Comput., 61:204 (1993), 675–699 | MR | Zbl

[6] K. Burrage, F. H. Chipman, P. H. Muir, “Order results for mono-implicit Runge–Kutta methods”, SIAM J. Numer. Anal., 31:3 (1994), 876–891 | DOI | MR | Zbl

[7] J. R. Cash, A. Singhal, “Mono-implicit Runge–Kutta formulae for the numerical integration of stiff differential systems”, IMA J. Numer. Anal., 2 (1982), 211–227 | DOI | MR | Zbl

[8] G. Yu. Kulikov, S. K. Shindin, “Adaptive nested implicit Runge–Kutta formulas of Gauss type”, Appl. Numer. Math., 59:3–4 (2009), 707–722 | DOI | MR | Zbl

[9] G. Yu. Kulikov, “Embedded symmetric nested implicit Runge–Kutta methods of Gauss and Lobatto types for solving stiff ordinary differential equations and Hamiltonian systems”, Comput. Math. Math. Phys., 55:6 (2015), 983–1003 | DOI | DOI | MR | Zbl

[10] A. Prothero, A. Robinson, “On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations”, Math. Comput., 28:1 (1974), 145–162 | DOI | MR | Zbl

[11] K. Dekker, J. G. Verwer, Stability of Runge–Kutta methods for stiff nonlinear differential equations, Elsevier, Amsterdam, 1984 | MR

[12] L. M. Skvortsov, “Increasing the accuracy of explicit Runge–Kutta methods in solving moderately stiff problems”, Doklady Mathematics, 63:3 (2001), 387–389 | Zbl

[13] L. M. Skvortsov, “Diagonalno-neiavnye FSAL-metody Runge–Kutty dlia zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17

[14] L. M. Skvortsov, “Accuracy of Runge–Kutta methods applied to stiff problems”, Comput. Math. Math. Phys., 43:9 (2003), 1320–1330 | MR | Zbl

[15] L. M. Skvortsov, “Explicit Runge–Kutta methods for moderately stiff problems”, Comput. Math. Math. Phys., 45:11 (2005), 1939–1951 | MR | Zbl

[16] L. M. Skvortsov, “Diagonally implicit Runge–Kutta methods for stiff problems”, Comput. Math. Math. Phys., 46:12 (2006), 2110–2123 | DOI | MR

[17] L. M. Skvortsov, “Model equations for accuracy investigation of Runge–Kutta methods”, Mat. Models Comput. Simul., 2:6 (2010), 800–811 | DOI | MR

[18] J. Rang, “An analysis of the Prothero–Robinson example for constructing new adaptive ESDIRK methods of order 3 and 4 Appl. Numer. Math., 2015, v.94, p.75–87”, Appl. Numer. Math., 94 (2015), 75–87 | DOI | MR | Zbl

[19] O. S. Kozlov, L. M. Skvortsov, “Programmnyi kompleks “MVTU” v nauchnykh issledovaniiakh i prikladnykh razrabotkakh”, Matem. modelirovanie, 27:11 (2015), 32–46

[20] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniia na kvaziravnomernykh setkah, Fizmatlit, M., 2005, 224 pp.