Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_1_a0, author = {L. M. Skvortsov}, title = {On implicit {Runge--Kutta} methods received as a result of inversion of explicit methods}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--19}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_1_a0/} }
L. M. Skvortsov. On implicit Runge--Kutta methods received as a result of inversion of explicit methods. Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2017_29_1_a0/
[1] E. Hairer, G. Wanner, Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, Springer-Verlag, Berlin, 1996 | MR | Zbl
[2] J. C. Butcher, Numerical methods for ordinary differential equations, 2th edition, John Wiley Sons, Chichester, 2008, 463 pp. | MR | Zbl
[3] N. N. Kalitkin, I. P. Poshivailo, “Computations with inverse Runge–Kutta methods”, Mat. Models Comput. Simul., 6:3 (2014), 272–285 | DOI | MR | Zbl
[4] E. Hairer, S. P. Norsett, G. Wanner, Solving ordinary differential equations, v. I, Nonstiff problems, Springer-Verlag, Berlin, 1987 | MR | Zbl
[5] P. Muir, B. Owren, “Order barriers and characterizations for continuous mono-implicit Runge–Kutta schemes”, Math. Comput., 61:204 (1993), 675–699 | MR | Zbl
[6] K. Burrage, F. H. Chipman, P. H. Muir, “Order results for mono-implicit Runge–Kutta methods”, SIAM J. Numer. Anal., 31:3 (1994), 876–891 | DOI | MR | Zbl
[7] J. R. Cash, A. Singhal, “Mono-implicit Runge–Kutta formulae for the numerical integration of stiff differential systems”, IMA J. Numer. Anal., 2 (1982), 211–227 | DOI | MR | Zbl
[8] G. Yu. Kulikov, S. K. Shindin, “Adaptive nested implicit Runge–Kutta formulas of Gauss type”, Appl. Numer. Math., 59:3–4 (2009), 707–722 | DOI | MR | Zbl
[9] G. Yu. Kulikov, “Embedded symmetric nested implicit Runge–Kutta methods of Gauss and Lobatto types for solving stiff ordinary differential equations and Hamiltonian systems”, Comput. Math. Math. Phys., 55:6 (2015), 983–1003 | DOI | DOI | MR | Zbl
[10] A. Prothero, A. Robinson, “On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations”, Math. Comput., 28:1 (1974), 145–162 | DOI | MR | Zbl
[11] K. Dekker, J. G. Verwer, Stability of Runge–Kutta methods for stiff nonlinear differential equations, Elsevier, Amsterdam, 1984 | MR
[12] L. M. Skvortsov, “Increasing the accuracy of explicit Runge–Kutta methods in solving moderately stiff problems”, Doklady Mathematics, 63:3 (2001), 387–389 | Zbl
[13] L. M. Skvortsov, “Diagonalno-neiavnye FSAL-metody Runge–Kutty dlia zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17
[14] L. M. Skvortsov, “Accuracy of Runge–Kutta methods applied to stiff problems”, Comput. Math. Math. Phys., 43:9 (2003), 1320–1330 | MR | Zbl
[15] L. M. Skvortsov, “Explicit Runge–Kutta methods for moderately stiff problems”, Comput. Math. Math. Phys., 45:11 (2005), 1939–1951 | MR | Zbl
[16] L. M. Skvortsov, “Diagonally implicit Runge–Kutta methods for stiff problems”, Comput. Math. Math. Phys., 46:12 (2006), 2110–2123 | DOI | MR
[17] L. M. Skvortsov, “Model equations for accuracy investigation of Runge–Kutta methods”, Mat. Models Comput. Simul., 2:6 (2010), 800–811 | DOI | MR
[18] J. Rang, “An analysis of the Prothero–Robinson example for constructing new adaptive ESDIRK methods of order 3 and 4 Appl. Numer. Math., 2015, v.94, p.75–87”, Appl. Numer. Math., 94 (2015), 75–87 | DOI | MR | Zbl
[19] O. S. Kozlov, L. M. Skvortsov, “Programmnyi kompleks “MVTU” v nauchnykh issledovaniiakh i prikladnykh razrabotkakh”, Matem. modelirovanie, 27:11 (2015), 32–46
[20] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniia na kvaziravnomernykh setkah, Fizmatlit, M., 2005, 224 pp.