Calculation of the Fermi--Dirac functions with exponentially convergent quadratures
Matematičeskoe modelirovanie, Tome 29 (2017) no. 12, pp. 134-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

The special quadrature formulas of high accuracy were built for a direct calculation of the Fermi–Dirac functions of half-integer indexes. It is shown that the dependence of the error from the number of nodes is not a power law, but exponential. We investigated the properties of such formulas. It is shown that the index of this exponent is proportional to the distance between the integral segment and the nearest pole of expanded expression. This provides a very fast convergence of quadratures. The simple approximations of the Fermi–Dirac functions of integer and halfinteger indexes were constructed; their accuracy was about 1%. They are convenient for the physical estimations. During the research, we found an asymptotic representation for Bernoulli numbers.
Keywords: Fermi–Dirac functions, half-integer indexes, exponential convergence, Bernoulli numbers.
Mots-clés : quadratures
@article{MM_2017_29_12_a9,
     author = {N. N. Kalitkin and S. A. Kolganov},
     title = {Calculation of the {Fermi--Dirac} functions with exponentially convergent quadratures},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {134--146},
     publisher = {mathdoc},
     volume = {29},
     number = {12},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_12_a9/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - S. A. Kolganov
TI  - Calculation of the Fermi--Dirac functions with exponentially convergent quadratures
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 134
EP  - 146
VL  - 29
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_12_a9/
LA  - ru
ID  - MM_2017_29_12_a9
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A S. A. Kolganov
%T Calculation of the Fermi--Dirac functions with exponentially convergent quadratures
%J Matematičeskoe modelirovanie
%D 2017
%P 134-146
%V 29
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_12_a9/
%G ru
%F MM_2017_29_12_a9
N. N. Kalitkin; S. A. Kolganov. Calculation of the Fermi--Dirac functions with exponentially convergent quadratures. Matematičeskoe modelirovanie, Tome 29 (2017) no. 12, pp. 134-146. http://geodesic.mathdoc.fr/item/MM_2017_29_12_a9/

[1] E.C. Stoner, J. McDougall, “The computation of Fermi-Dirac functions”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 237:773 (1938), 67–104 | DOI

[2] H.C. Thacher (Jr.), W.J. Cody, “Rational chebyshev approximations for Fermi-Dirac integrals of orders -1/2, 1/2 and 3/2”, Mathematics of Computation, 1967, 30–40 | MR | Zbl

[3] R.B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, London, 1973, 521 pp. | MR | Zbl

[4] P.V. Halen, D. L. Pulfrey, “Accurate, short series approximations to Fermi-Dirac integrals of order -1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2”, J. Appl. Phys., 57 (1985), 5271–5274 | DOI

[5] L.D. Cloutman, “Numerical evaluation of the Fermi-Dirac integrals”, The Astrophysical Journal Supplement Series, 71 (1989), 677 | DOI

[6] M. Goano, “Algorithm 745: computation of the complete and incomplete fermi-dirac integral”, ACM Transactions on Mathematical Software (TOMS), 21:3 (1995), 221–232 | DOI | Zbl

[7] A.J. MacLeod, “Algorithm 779: Fermi-Dirac functions of order -1/2, 1/2, 3/2, 5/2”, ACM Transactions on Mathematical Software (TOMS), 24:1 (1998), 1–12 | DOI | MR | Zbl

[8] Toshio Fukushima, “Precise and fast computation of Fermi-Dirac integral of integer and half integer order by piecewise minimax rational approximation”, Applied Mathematics and Computation, 259:C (2015), 708–729 | DOI | MR

[9] N.N. Kalitkin, S.A. Kolganov, “Precision approximations for Fermi-Dirac functions of the integer index”, Mathematical Models and Computer Simulations, 8:6 (2016), 607–614 | DOI | MR

[10] O.N. Koroleva, A.V. Mazhukin, V.I. Mazhukin, P.V. Breslavskii, “Analiticheskaia approksimatsiia integralov Fermi-Diraka polutselykh i tselykh poriadkov”, Matematicheskoe modelirovanie, 28:11 (2016), 55–63 | Zbl

[11] I.S. Gradshtein, I.M. Ryzhik, Tablitsy integralov, summ, riadov i proizvedenii, 4-e izdanie, Fizmatgiz, M., 1963, 1100 pp.

[12] A.A. Belov, “Coefficients of Euler-Maclaurin formulas for numerical integration”, Mathematical Models and Computer Simulations, 6:1 (2014), 32–37 | DOI | MR | Zbl

[13] N.N. Kalitkin, E.A. Alshina, Chislennye metody, v. 1, Chislennyi analiz, Akademiia, M., 2013

[14] N.N. Kalitkin, I.V. Ritus, “Gladkie approksimatsii funktsii Fermi-Diraka”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 26:3 (1986), 461–465

[15] N.N. Kalitkin, I.V Ritus, Gladkie approksimatsii funktsii Fermi-Diraka, Preprint No 72, Inst. prikl. mat. AN SSSR, M., 1981, 9 pp.