Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_12_a9, author = {N. N. Kalitkin and S. A. Kolganov}, title = {Calculation of the {Fermi--Dirac} functions with exponentially convergent quadratures}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {134--146}, publisher = {mathdoc}, volume = {29}, number = {12}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_12_a9/} }
TY - JOUR AU - N. N. Kalitkin AU - S. A. Kolganov TI - Calculation of the Fermi--Dirac functions with exponentially convergent quadratures JO - Matematičeskoe modelirovanie PY - 2017 SP - 134 EP - 146 VL - 29 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_12_a9/ LA - ru ID - MM_2017_29_12_a9 ER -
N. N. Kalitkin; S. A. Kolganov. Calculation of the Fermi--Dirac functions with exponentially convergent quadratures. Matematičeskoe modelirovanie, Tome 29 (2017) no. 12, pp. 134-146. http://geodesic.mathdoc.fr/item/MM_2017_29_12_a9/
[1] E.C. Stoner, J. McDougall, “The computation of Fermi-Dirac functions”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 237:773 (1938), 67–104 | DOI
[2] H.C. Thacher (Jr.), W.J. Cody, “Rational chebyshev approximations for Fermi-Dirac integrals of orders -1/2, 1/2 and 3/2”, Mathematics of Computation, 1967, 30–40 | MR | Zbl
[3] R.B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, London, 1973, 521 pp. | MR | Zbl
[4] P.V. Halen, D. L. Pulfrey, “Accurate, short series approximations to Fermi-Dirac integrals of order -1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2”, J. Appl. Phys., 57 (1985), 5271–5274 | DOI
[5] L.D. Cloutman, “Numerical evaluation of the Fermi-Dirac integrals”, The Astrophysical Journal Supplement Series, 71 (1989), 677 | DOI
[6] M. Goano, “Algorithm 745: computation of the complete and incomplete fermi-dirac integral”, ACM Transactions on Mathematical Software (TOMS), 21:3 (1995), 221–232 | DOI | Zbl
[7] A.J. MacLeod, “Algorithm 779: Fermi-Dirac functions of order -1/2, 1/2, 3/2, 5/2”, ACM Transactions on Mathematical Software (TOMS), 24:1 (1998), 1–12 | DOI | MR | Zbl
[8] Toshio Fukushima, “Precise and fast computation of Fermi-Dirac integral of integer and half integer order by piecewise minimax rational approximation”, Applied Mathematics and Computation, 259:C (2015), 708–729 | DOI | MR
[9] N.N. Kalitkin, S.A. Kolganov, “Precision approximations for Fermi-Dirac functions of the integer index”, Mathematical Models and Computer Simulations, 8:6 (2016), 607–614 | DOI | MR
[10] O.N. Koroleva, A.V. Mazhukin, V.I. Mazhukin, P.V. Breslavskii, “Analiticheskaia approksimatsiia integralov Fermi-Diraka polutselykh i tselykh poriadkov”, Matematicheskoe modelirovanie, 28:11 (2016), 55–63 | Zbl
[11] I.S. Gradshtein, I.M. Ryzhik, Tablitsy integralov, summ, riadov i proizvedenii, 4-e izdanie, Fizmatgiz, M., 1963, 1100 pp.
[12] A.A. Belov, “Coefficients of Euler-Maclaurin formulas for numerical integration”, Mathematical Models and Computer Simulations, 6:1 (2014), 32–37 | DOI | MR | Zbl
[13] N.N. Kalitkin, E.A. Alshina, Chislennye metody, v. 1, Chislennyi analiz, Akademiia, M., 2013
[14] N.N. Kalitkin, I.V. Ritus, “Gladkie approksimatsii funktsii Fermi-Diraka”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 26:3 (1986), 461–465
[15] N.N. Kalitkin, I.V Ritus, Gladkie approksimatsii funktsii Fermi-Diraka, Preprint No 72, Inst. prikl. mat. AN SSSR, M., 1981, 9 pp.