Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_12_a8, author = {M. V. Alekseev and A. A. Kuleshov and E. B. Savenkov}, title = {Thermomechanical model for impermeable porous medium with chemically active filler}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {117--133}, publisher = {mathdoc}, volume = {29}, number = {12}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_12_a8/} }
TY - JOUR AU - M. V. Alekseev AU - A. A. Kuleshov AU - E. B. Savenkov TI - Thermomechanical model for impermeable porous medium with chemically active filler JO - Matematičeskoe modelirovanie PY - 2017 SP - 117 EP - 133 VL - 29 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_12_a8/ LA - ru ID - MM_2017_29_12_a8 ER -
%0 Journal Article %A M. V. Alekseev %A A. A. Kuleshov %A E. B. Savenkov %T Thermomechanical model for impermeable porous medium with chemically active filler %J Matematičeskoe modelirovanie %D 2017 %P 117-133 %V 29 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_12_a8/ %G ru %F MM_2017_29_12_a8
M. V. Alekseev; A. A. Kuleshov; E. B. Savenkov. Thermomechanical model for impermeable porous medium with chemically active filler. Matematičeskoe modelirovanie, Tome 29 (2017) no. 12, pp. 117-133. http://geodesic.mathdoc.fr/item/MM_2017_29_12_a8/
[1] L.W. Lake, Enhanced Oil Recovery, Society of Petroleum Engineers, 2010, 550 pp.
[2] L.W. Lake, R. Johns, B. Rossen, G. Pope, Fundamentals Enhanced Oil Recovery, Digital Edition, Society of Petroleum Engineers, 2014, 498 pp.
[3] E. Catalano, B. Chareyre, A. Cortis, E. Barthelemy, “A pore-scale hydro-mechanical coupled model for geomaterials”, II International Conference on Particle-based Methods – Fundamentals and Applications (PARTICLES 2011), 2011
[4] E.H. Saenger, F. Enzmann, Y. Keehm, H. Steeb, “Digital rock physics: Effect of fluid viscosity on effective elastic properties”, Journal of Applied Geophysics, 74 (2011), 236–241 | DOI
[5] H. Cao, A. Boyd, V. Da Silva Simoes, “Numerical simulation of the elastic properties of porous carbonate rocks”, 14th International Congress of the Brazilian Geophysical Society, 2013, SBGF-4064 http://sys2.sbgf.org.br/congresso/abstracts/trabalhos/sbgf_4064.pdf
[6] R. Sain, Numerical simulation of pore-scale heterogeneity and its effects on elastic, electrical and transport properties, PhD Thesis, Stanford University, 2010
[7] H. Lan, C.D. Martin, B. Hu, “Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading”, J. Geophys. Res., 115 (2010), B01202 | DOI
[8] V.S. Zarubin, G.N. Kuvyrkin, Matematicheskie modeli termomekhaniki, Fizmatlit, M., 2002, 168 pp.
[9] O. Iu. Batalin, A. I. Brusilovskii, M. Iu. Zakharov, Fazovye ravnovesiia v sistemakh prirodnykh uglevodorodov, Nedra, M., 1992, 272 pp.
[10] R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The properties of gases and liquids, 3rd Ed., McGraw-Hill, New York, 1977
[11] J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, Molecular thermodynamics of fluid-phase equilibria, 3rd Ed., Prentice Hall, 1998, 864 pp.
[12] M.L. Michelsen, J. Mollerup, M.P. Breil, Thermodynamic models: fundamental and computational aspects, Tie-Line Publications, 2008
[13] K.S. Krasnov (red.), Fizicheskaia khimiia, v. 1, 2, Vyshaya shkola, M., 1995, 831 pp.
[14] L. Formaggia, J.F. Gerbeau, F. Nobile, A. Quarteroni, “Numerical treatment of defective boundary conditions for the Navier-Stokes equations”, SIAM J. Numer. Anal., 40:1 (2002), 376–401 | DOI | MR | Zbl
[15] L. Formaggia, J.F. Gerbeau, F. Nobile, A. Quarteroni, “On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels”, Computer Methods in Applied Mechanics and Engineering, 191:6–7 (2001), 561–582 | DOI | MR | Zbl
[16] M. Tayachi, A. Rousseau, E. Blayo, N. Goutal, V. Martin, Design and analysis of a Schwarz coupling method for a dimensionally heterogeneous problem, Project-Teams MOISE, Research Report, No 8182, INIRIA, 2012
[17] J.G. Heywood, R. Rannacher, S. Turek, “Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations”, International Journal for Numerical Methods in Fluids, 22 (1996), 325–352 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl