Computer simulation of atomic excitation conductivity using quantum master equation
Matematičeskoe modelirovanie, Tome 29 (2017) no. 12, pp. 105-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the conductivity of excitations in short chains of optical cavities with two-level atoms in the models of JCH type, where either we explicitly take into account the photon jumps between atoms, or is merely a transfer of excitation from atom to atom. In that model, we reproduce two quantum effects using computer simulation: conductivity increase in the presence of dephasing noise (DAT, the effect of dephasing assisted transport) and non-trivial dependence of the conductivity on the intensity of runoff and inflow (quantum bottleneck). Using numrical simulation we found an intresting interplay between those two effects. It was found that DAT effect takes place only in non-optimal values of runoff and inflow, i.e. for those sets of parameters where the conductivity is limited by the “quantum bottleneck” effect.
Keywords: quantum master equation, quantum bottleneck, dephasing assisted transport, JCH model.
@article{MM_2017_29_12_a7,
     author = {Yu. I. Ozhigov and N. A. Skovoroda},
     title = {Computer simulation of atomic excitation conductivity using quantum master equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {105--116},
     publisher = {mathdoc},
     volume = {29},
     number = {12},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_12_a7/}
}
TY  - JOUR
AU  - Yu. I. Ozhigov
AU  - N. A. Skovoroda
TI  - Computer simulation of atomic excitation conductivity using quantum master equation
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 105
EP  - 116
VL  - 29
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_12_a7/
LA  - ru
ID  - MM_2017_29_12_a7
ER  - 
%0 Journal Article
%A Yu. I. Ozhigov
%A N. A. Skovoroda
%T Computer simulation of atomic excitation conductivity using quantum master equation
%J Matematičeskoe modelirovanie
%D 2017
%P 105-116
%V 29
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_12_a7/
%G ru
%F MM_2017_29_12_a7
Yu. I. Ozhigov; N. A. Skovoroda. Computer simulation of atomic excitation conductivity using quantum master equation. Matematičeskoe modelirovanie, Tome 29 (2017) no. 12, pp. 105-116. http://geodesic.mathdoc.fr/item/MM_2017_29_12_a7/

[1] R.E. Fenna, B.W. Matthews, “Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola”, Nature, 258:5536 (1975), 573–577 | DOI

[2] V.M. Akulin, Dinamika slozhnykh kvantovykh sistem, Fizmatlit, 2009

[3] K.A. Valiev, A.A. Kokin, Kvantovye kompiutery. Nadezhdy i realnost, Reguliarnaia i khaoticheskaia dinamika, M.–Izhevsk, 2006

[4] K.A. Valiev, “Kvantovye kompiutery i kvantovye vychisleniia”, Uspekhi fizicheskikh nauk, 175:1 (2005), 3–39 | DOI

[5] A. Kitaev, A. Shen, M. Vialyi, Klassicheskie i kvantovye vychisleniia, MTsNMO, 1999

[6] F. Caruso et al., “Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport”, J. Chem. Phys., 131 (2009), 105106 | DOI

[7] S.F. Huelga, M.B. Plenio, “Vibration, quanta and biology”, Contemp. Phys., 54 (2013), 181–207 | DOI

[8] M.B. Plenio, S.F. Huelga, “Dephasing assisted transport: Quantum networks and biomolecules”, New J. Phys., 10 (2008), 113019 | DOI

[9] B.P. Lanyon, J.D. Whitfield, G.G. Gillett, et al., “Towards quantum chemistry on a quantum computer”, Nat. Chem., 2009, no. 2, 106–111

[10] L. Contreras-Pulido, M. Bruderer, S. Huelga, et al., “Dephasing-assisted transport in linear triple quantum dots”, New J. Phys., 16 (2014), 113061 | DOI

[11] A.W. Chin, S.F. Huelga, M.B. Plenio, “Coherence and decoherence in biological systems: Principles of noise-assisted transport and the origin of long-lived coherences”, Phil. Trans. R. Soc. A, 373:2036 (2012), 3638–3657 | DOI | MR

[12] L. Fedichkin, D. Solenov, C. Tamon, “Mixing and decoherence in continuous-time quantum walks on cycles”, Quantum Information and Computation, 6:3 (2006), 263–276 | MR | Zbl

[13] D. Reitzner, D. Nagaj, V. Buzek, “Quantum Walks”, Acta Phys. Slovaca, 61:6 (2011), 603–725 | DOI

[14] S.C. Hou, S.L. Liang, X.X. Yi, “Non-Markovianity and memory effects in quantum open systems”, Phys. Rev. A, 91 (2015), 012109 | DOI | MR

[15] A.W. Chin, A. Rivas, S. Huelga, et al., “Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials”, J. Math. Phys., 51 (2010), 092109 | DOI | MR | Zbl

[16] H. Shu, Y. Zhao, C. Qing-Hu, “Absence of collapse in quantum Rabi oscillations”, Phys. Rev. A, 90 (2014), 053848 | DOI

[17] Yu-Yu Zhang, C. Qing-Hu, “Generalized rotating-wave approximation for the two-qubit quantum Rabi model”, Phys. Rev. A, 91 (2015), 013814 | DOI | MR

[18] A. Kossakowski, “On quantum statistical mechanics of non-Hamiltonian systems”, Rep. Math. Phys., 43:4 (1972), 247–274 | DOI | MR

[19] G. Lindblad, “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[20] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, Oxford, 2002 | MR | Zbl

[21] M. Knap, E. Arrigoni, W. von der Linden, et al., “Emission characteristics of laser-driven dissipative coupled-cavity systems”, Phys. Rev. A, 83 (2011), 023821 | DOI