Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_11_a9, author = {I. S. Poljanskij}, title = {Barycentric method in the optimal control shape reflecting surface of the mirror antenna}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {140--150}, publisher = {mathdoc}, volume = {29}, number = {11}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_11_a9/} }
TY - JOUR AU - I. S. Poljanskij TI - Barycentric method in the optimal control shape reflecting surface of the mirror antenna JO - Matematičeskoe modelirovanie PY - 2017 SP - 140 EP - 150 VL - 29 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_11_a9/ LA - ru ID - MM_2017_29_11_a9 ER -
I. S. Poljanskij. Barycentric method in the optimal control shape reflecting surface of the mirror antenna. Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 140-150. http://geodesic.mathdoc.fr/item/MM_2017_29_11_a9/
[1] Arhipov N. S., Poljanskij I. S., Metody analiza i strukturno-parametricheskogo sinteza zerkalnyh antenn, Monografiia, Akademiia FSO Rossii, Orel, 2014, 269 pp.
[2] Arhipov N. S., Poljanskij I. S., Somov A. M., Analiz i strukturno-parametricheskii sintez zerkalnyh antenn, ed. A.M. Somov, Gorjachaia liniia-Telekom, M., 2017, 226 pp.
[3] Somov A. M., Poljanskij I. S., Stepanov D. E., “Sintez otrazhaiushchih poverhnostei antennoi sistemy zerkalnogo tipa s ispolzovaniem baritsentricheskogo podhoda pri parametrizatsii reflektora”, Antenny, 2015, no. 8, 11–19
[4] Poon Ada, Brodersen Robert W., Tse David, “Degrees of Freedom in Multiple-Antenna Channels: A Signal Space Approach”, IEEE Transactions on Information Theory, 51:2 (2005), 523–536 | DOI | MR | Zbl
[5] Beljanskij P. V., Mustafaev M. I., “Upravlenie formoi korrektorov fazovogo fronta bolshikh radioteleskopov”, Avtomatika i telemekhanika, 1985, no. 8, 5–14
[6] Beljanskij P. V., Mustafaev M. I., “Modalnoe upravlenie formoi prostranstvenno-raspredelennykh obektov”, Avtomatika i telemekhanika, 1988, no. 8, 37–46
[7] Madec P-Y., “Overview of deformable mirror technologies for adaptive optics and astronomy”, Adaptive Optics Systems III, Proc. SPIE, 8447, eds. B. Ellerbroek, E. Marchetti, J. Veran, 2012, 5 pp.
[8] Grosso R., Ellin M., “Membrannoe zerkalo kak element adaptivnoi opticheskoi sistemy”, Adaptivnaja optika, Mir, M., 1980, 428–447
[9] I.S. Poljanskij, D.E. Stepanov, Sposob sinteza formy otrazhaiushchei poverhnosti antennoi sistemy zerkalnogo tipa, Pat. No 2576493 Rossiiskoi Federacii, MPK H01Q3/01; zaiavitel i patentoobladatel Gosudarstvennoe kazennoe obrazovatelnoe uchrezhdenie vysshego professionalnogo obrazovaniia Akademiia FSO Rossii, No 2014124657, zaiavl. 17.06.2014, opubl. 05.02.2016, 11 pp.
[10] A. Raja Bayanna, Rohan E. Louis, S. Chatterjee, Shibu K. Mathew, P. Venkatakrishnan, “Membrane based Deformable Mirror: Intrinsic aberrations and alignment issues”, Applied Optics, 54:7 (2015), 1727–1736 | DOI
[11] E. M. Reza, Finite elements methods in mechanics, Springer, Cham, Switzerland, 2014, 370 pp. | MR | Zbl
[12] Duczek S., Gabbert U., “The finite cell method for polygonal meshes: poly-FCM”, Computational Mechanics, 58 (2016), 587–618 | DOI | MR | Zbl
[13] Randall J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2007, 339 pp. | MR | Zbl
[14] R. D. Graglia, A. F. Peterson, M. Boella, Higher-order techniques in computational electromagnetics, Series on Electromagnetism in Information and Communication, SciTech Publishing; IET, 2016, 392 pp.
[15] Arhipov N. S., Poljanskij I. S., Stepanov D. E., “Baritsentricheskii metod v zadachah analiza polia v reguliarnom volnovode s proizvolnym poperechnym secheniem”, Antenny, 2015, no. 1(212), 32–40
[16] Avdonin A. S., Prikladnye metody rascheta obolochek i tonkostennykh konstruktsij, Mashinostroenie, M., 1969, 402 pp.
[17] Poljanskij I. S., “Baritsentricheskie koordinaty Puassona dlia mnogomernoi approksimatsii skaliarnogo potentsiala vnutri proizvolnoi oblasti (Chast 1)”, Vestnik SGTU, 2015, no. 1(78), 30–36
[18] Belyaev A., “On Transfinite Barycentric Coordinates”, Proc. Fourth Eurographics Symp. Geometry Processing, 2006, 89–99
[19] Poljanskij I. S., “Baritsentricheskie koordinaty Puassona-Rimana”, Trudy SPIIRAN, 49:6 (2016), 32–48 | DOI
[20] Pontrjagin L. S., Printsip maksimuma, Fond matematicheskogo obrazovaniia i prosveshcheniia, M., 1998, 70 pp.