Barycentric method in the optimal control shape reflecting surface of the mirror antenna
Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 140-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article use barycentric method in the solution of the optimal control shape reflecting surface of the mirror antenna is proposed. The reflector is configured of a deformable membrane. The control problem to the solution in the approximation methods of Ritz and Galerkin biharmonic differential equation is reduced. With barycentric approximation method of Ritz for the whole region of analysis as a whole without its discretization into finite elements is defined. For a given approximation of the initial task of the Pontryagin maximum principle to the system of ordinary differential equations is reduced. It was proposed to solve this problem numerically using standard methods, such as Runge–Kutta. To determine the preference of the use barycentric the method of comparative examples of solution of optimal control problems form the reflecting surface of the reflector mirror antenna is considered. Additional positive properties barycentric method in relation to determining the number of control actions and their location on the control surfaces are highlighted.
Keywords: barycentric method, optimal control, membrane reflector mirror antenna, Pontryagin maximum principle.
@article{MM_2017_29_11_a9,
     author = {I. S. Poljanskij},
     title = {Barycentric method in the optimal control shape reflecting surface of the mirror antenna},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {140--150},
     publisher = {mathdoc},
     volume = {29},
     number = {11},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_11_a9/}
}
TY  - JOUR
AU  - I. S. Poljanskij
TI  - Barycentric method in the optimal control shape reflecting surface of the mirror antenna
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 140
EP  - 150
VL  - 29
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_11_a9/
LA  - ru
ID  - MM_2017_29_11_a9
ER  - 
%0 Journal Article
%A I. S. Poljanskij
%T Barycentric method in the optimal control shape reflecting surface of the mirror antenna
%J Matematičeskoe modelirovanie
%D 2017
%P 140-150
%V 29
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_11_a9/
%G ru
%F MM_2017_29_11_a9
I. S. Poljanskij. Barycentric method in the optimal control shape reflecting surface of the mirror antenna. Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 140-150. http://geodesic.mathdoc.fr/item/MM_2017_29_11_a9/

[1] Arhipov N. S., Poljanskij I. S., Metody analiza i strukturno-parametricheskogo sinteza zerkalnyh antenn, Monografiia, Akademiia FSO Rossii, Orel, 2014, 269 pp.

[2] Arhipov N. S., Poljanskij I. S., Somov A. M., Analiz i strukturno-parametricheskii sintez zerkalnyh antenn, ed. A.M. Somov, Gorjachaia liniia-Telekom, M., 2017, 226 pp.

[3] Somov A. M., Poljanskij I. S., Stepanov D. E., “Sintez otrazhaiushchih poverhnostei antennoi sistemy zerkalnogo tipa s ispolzovaniem baritsentricheskogo podhoda pri parametrizatsii reflektora”, Antenny, 2015, no. 8, 11–19

[4] Poon Ada, Brodersen Robert W., Tse David, “Degrees of Freedom in Multiple-Antenna Channels: A Signal Space Approach”, IEEE Transactions on Information Theory, 51:2 (2005), 523–536 | DOI | MR | Zbl

[5] Beljanskij P. V., Mustafaev M. I., “Upravlenie formoi korrektorov fazovogo fronta bolshikh radioteleskopov”, Avtomatika i telemekhanika, 1985, no. 8, 5–14

[6] Beljanskij P. V., Mustafaev M. I., “Modalnoe upravlenie formoi prostranstvenno-raspredelennykh obektov”, Avtomatika i telemekhanika, 1988, no. 8, 37–46

[7] Madec P-Y., “Overview of deformable mirror technologies for adaptive optics and astronomy”, Adaptive Optics Systems III, Proc. SPIE, 8447, eds. B. Ellerbroek, E. Marchetti, J. Veran, 2012, 5 pp.

[8] Grosso R., Ellin M., “Membrannoe zerkalo kak element adaptivnoi opticheskoi sistemy”, Adaptivnaja optika, Mir, M., 1980, 428–447

[9] I.S. Poljanskij, D.E. Stepanov, Sposob sinteza formy otrazhaiushchei poverhnosti antennoi sistemy zerkalnogo tipa, Pat. No 2576493 Rossiiskoi Federacii, MPK H01Q3/01; zaiavitel i patentoobladatel Gosudarstvennoe kazennoe obrazovatelnoe uchrezhdenie vysshego professionalnogo obrazovaniia Akademiia FSO Rossii, No 2014124657, zaiavl. 17.06.2014, opubl. 05.02.2016, 11 pp.

[10] A. Raja Bayanna, Rohan E. Louis, S. Chatterjee, Shibu K. Mathew, P. Venkatakrishnan, “Membrane based Deformable Mirror: Intrinsic aberrations and alignment issues”, Applied Optics, 54:7 (2015), 1727–1736 | DOI

[11] E. M. Reza, Finite elements methods in mechanics, Springer, Cham, Switzerland, 2014, 370 pp. | MR | Zbl

[12] Duczek S., Gabbert U., “The finite cell method for polygonal meshes: poly-FCM”, Computational Mechanics, 58 (2016), 587–618 | DOI | MR | Zbl

[13] Randall J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2007, 339 pp. | MR | Zbl

[14] R. D. Graglia, A. F. Peterson, M. Boella, Higher-order techniques in computational electromagnetics, Series on Electromagnetism in Information and Communication, SciTech Publishing; IET, 2016, 392 pp.

[15] Arhipov N. S., Poljanskij I. S., Stepanov D. E., “Baritsentricheskii metod v zadachah analiza polia v reguliarnom volnovode s proizvolnym poperechnym secheniem”, Antenny, 2015, no. 1(212), 32–40

[16] Avdonin A. S., Prikladnye metody rascheta obolochek i tonkostennykh konstruktsij, Mashinostroenie, M., 1969, 402 pp.

[17] Poljanskij I. S., “Baritsentricheskie koordinaty Puassona dlia mnogomernoi approksimatsii skaliarnogo potentsiala vnutri proizvolnoi oblasti (Chast 1)”, Vestnik SGTU, 2015, no. 1(78), 30–36

[18] Belyaev A., “On Transfinite Barycentric Coordinates”, Proc. Fourth Eurographics Symp. Geometry Processing, 2006, 89–99

[19] Poljanskij I. S., “Baritsentricheskie koordinaty Puassona-Rimana”, Trudy SPIIRAN, 49:6 (2016), 32–48 | DOI

[20] Pontrjagin L. S., Printsip maksimuma, Fond matematicheskogo obrazovaniia i prosveshcheniia, M., 1998, 70 pp.