Mathematical simulation of a massive star evolution on the basis of a gasdynamical model
Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 131-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

The FLOW method, coupled with an algorithm for self-gravity computations, is applied for three-dimensional modeling of astrophysical flows. This method is based on difference approximations of conservation laws, written for finite volumes. It is implemented within the simulation tool box FLUX, designed for computer systems of cluster architecture. The problem of hydrodynamic simulation in a model of a massive star of third generation (Pop III), which is a progenitor of pair instability supernova (PISN), is considered. Large-scale convective structures are produced under the neutral equilibrium conditions that significantly affect the process of a supernova explosion.
Keywords: mathematical modeling, conservative difference schemes, numerical methods, parallel algorithms, aerohydrodynamics, astrophysics, supernovae, gravity
Mots-clés : vortex structures.
@article{MM_2017_29_11_a8,
     author = {A. V. Babakov and M. V. Popov and V. M. Chechetkin},
     title = {Mathematical simulation of a massive star evolution on the basis of a gasdynamical model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {131--139},
     publisher = {mathdoc},
     volume = {29},
     number = {11},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_11_a8/}
}
TY  - JOUR
AU  - A. V. Babakov
AU  - M. V. Popov
AU  - V. M. Chechetkin
TI  - Mathematical simulation of a massive star evolution on the basis of a gasdynamical model
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 131
EP  - 139
VL  - 29
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_11_a8/
LA  - ru
ID  - MM_2017_29_11_a8
ER  - 
%0 Journal Article
%A A. V. Babakov
%A M. V. Popov
%A V. M. Chechetkin
%T Mathematical simulation of a massive star evolution on the basis of a gasdynamical model
%J Matematičeskoe modelirovanie
%D 2017
%P 131-139
%V 29
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_11_a8/
%G ru
%F MM_2017_29_11_a8
A. V. Babakov; M. V. Popov; V. M. Chechetkin. Mathematical simulation of a massive star evolution on the basis of a gasdynamical model. Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 131-139. http://geodesic.mathdoc.fr/item/MM_2017_29_11_a8/

[1] O.M. Belotserkovskii, L.I. Severinov, “The conservative “flow” method and the calculation of the flow of a viscous heat-conducting gas past a body of finite size”, USSR Comput. Mathem. and Mathem. Phys., 13:2 (1973), 141–156 | DOI | MR | Zbl

[2] O.M. Belotserkovskii, A.V. Babakov, “The simulation of the coherent vortex structures in the turbulent flows”, Advances in Mechanics, Poland, 13:3/4 (1990), 135–169

[3] A.V. Babakov, “Numerical simulation of spatially unsteady jets of compressible gas on a multiprocessor computer system”, Comp. Mathem. and Mathem. Phys., 51:2 (2011), 235–244 | DOI | MR | Zbl

[4] A.V. Babakov, “Matematicheskoye modelirovaniye prostranstvenno-nestatsionarnykh zadach aerodinamiki na vychislitel'nykh kompleksakh parallel'noy arkhitektury”, Proceedings of the VII International seminar “Supercomputing and Mathematical Modeling”, FSUE “RFNC-VNIIEF”, Sarov, 2011, 44–50

[5] A.V. Babakov, “Program package FLUX for the simulation of fundamental and applied problems of fluid dynamics”, Comp. Mathem. and Mathem. Physics, 56:6 (2016), 1151–1161 | DOI | DOI | MR | Zbl

[6] A.A. Baranov, P. Chardonnet, V.M. Chechetkin, A.A. Filina, M.V. Popov, “Multidimensional Simulations of Pair-Instability Supernovae”, Astron. and Astrophys., 558 (2013), A10 | DOI

[7] A.G. Aksenov, “Numerical solution of the Poisson equation for the three-dimensional modeling of stellar equations”, Astronomy Letters, 25:3 (1999), 185–190

[8] A.V. Babakov, O.M. Belotserkovskii, A.P. Zyuzin, “O dvukh rezhimakh techeniya szhimayemogo gaza u tsilindra”, Dokl. USSR Academy of Sciences, 279:2 (1984), 315–318

[9] D. Kasen, S.E. Woosley, A. Heger, “Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout”, Astrophys. J., 734 (2011), 102 | DOI

[10] K.-J. Chen, A. Heger, A.S. Almgren, “Multidimensional simulations of pair-instability supernovae”, Comput. Phys. Commun., 182 (2011), 254 | DOI | Zbl

[11] M.V. Popov, A.A. Filina, A.A. Baranov, P. Chardonnet, V.M. Chechetkin, “Aspherical Nucleosynthesis in a Core-collapse Supernova with $25 M_\theta$ Standard Progenitor”, Astrophys. J., 783 (2014), 43 | DOI

[12] S. Chandrasekhar, N.R. Lebovitz, “Non-radial oscillations and convective instability of gaseous masses”, Astrophys. J., 138 (1963), 185–199 | DOI | Zbl

[13] O.M. Belotserkovskii, A.M. Oparin, V.M. Chechetkin, Turbulence: New Approaches, Cambridge International Science Publishi, 2005, 280 pp.

[14] M.V. Popov, S.D. Ustyugov, V.M. Chechetkin, “Development of the Geometric Structure of the Thermonuclear-Deflagration Front in Type Ia Supernovae”, Astron. Rep., 48:11 (2004), 921–933 | DOI

[15] V. Bychkov, M.V. Popov, A.M. Oparin, L. Stenflo, V.M. Chechetkin, “Dynamics of Bubbles in Supernovae and Turbulent Vortices”, Astron. Rep., 50:4 (2006), 298–311 | DOI | MR

[16] S.D. Ustyugov, V.M. Chechetkin, “Supernovae explosions in the presence of large-scale convective instability in a rotating protoneutron star”, Astron. Rep., 43:11 (1999), 718–726