Modeling the stabilization process on the boundary conditions for the quasi-two-dimensional fluid with the four vortex structure
Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 99-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

For two-dimensional Navier–Stokes equations approximately describes the motion of a viscous incompressible fluid in a rectangular cell under the external electro-magnetic force and having for the selected values of the parameters the unstable quasi-stationary solution with the four vortex structure the problem of numerical stabilization on the boundary conditions is considered. Mathematical formulation of this problem, method of solution and numerical results are presented.
Keywords: unstable quasi-stationary solutions of two-dimensional Navier–Stokes equation, numerical stabilization on initial data and on boundary conditions.
@article{MM_2017_29_11_a6,
     author = {A. A. Kornev},
     title = {Modeling the stabilization process on the boundary conditions for the quasi-two-dimensional fluid with the four vortex structure},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {29},
     number = {11},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_11_a6/}
}
TY  - JOUR
AU  - A. A. Kornev
TI  - Modeling the stabilization process on the boundary conditions for the quasi-two-dimensional fluid with the four vortex structure
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 99
EP  - 110
VL  - 29
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_11_a6/
LA  - ru
ID  - MM_2017_29_11_a6
ER  - 
%0 Journal Article
%A A. A. Kornev
%T Modeling the stabilization process on the boundary conditions for the quasi-two-dimensional fluid with the four vortex structure
%J Matematičeskoe modelirovanie
%D 2017
%P 99-110
%V 29
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_11_a6/
%G ru
%F MM_2017_29_11_a6
A. A. Kornev. Modeling the stabilization process on the boundary conditions for the quasi-two-dimensional fluid with the four vortex structure. Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 99-110. http://geodesic.mathdoc.fr/item/MM_2017_29_11_a6/

[1] E.Z. Gak, Magnintye polia i vodnye eloktrolity, «Elmor», Sankt-Peterbyrg, 2013, 535 pp.

[2] M.Z. Gak, “Laboratornoe issledovanie avtokolebanii v sisteme chetyrekh vikhrei”, Izv. AN SSSR. Fiz. Atmos. Okeana, 17:2 (1981), 201–205

[3] L.A. Pleshanova, “Avtokolebaniia v sisteme cheturekh vikhrei”, Izv. AN SSSR. Fiz. Atmos. Okeana, 18:4 (1982), 339–348

[4] A. Thess, “Instabilities in two-dimensional spatially periodic flows”, Phys. Fluids A, 4:7 (1992), 1396–1407 | DOI | MR | Zbl

[5] S.D. Danilov, V.A. Dovzhenko, “Dokriticheskoe techenie v sisteme chetyrekh vikhrei”, Izv. AN SSSR. Fiz. Atmos. Okeana, 31:5 (1995), 621–626

[6] S.D. Danilov, F.V. Dolzhanskii, V.A. Dovzhenko, V.A. Krymov, “An advanced investigation of interaction of allocated quasi-two-dimensional vortices”, CHAOS, 6:3 (1996), 297–308 | DOI

[7] A.V. Fursikov, A.A. Kornev, “Feedback stabilization for Navier-Stokes equations: Theory and Calculations”, Mathematical Aspects of Fluid Mechanics, Lecture notes series, Cambridge University Press, 2012, 130–172 | MR | Zbl

[8] A.M. Lyapunov, The General Problem of the Stability of Motion, Taylor Francis, London, 1992 | MR | Zbl

[9] E.V. Chizhonkov, “Numerical aspects of one stabilization method”, Russ. J. Numer. Anal. and Math. Modelling, 18:5 (2003), 363–376 | DOI | MR | Zbl

[10] A.A. Kornev, “On an Iterative Method for the Construction of Hadamard Mustaches”, Comput. Math. Math. Phys., 44 (2004), 1274–1283 | MR | Zbl

[11] A.A. Kornev, “Classification of Methods of Approximate Projection onto a Stable Manifold”, Dokl., 71 (2005), 124–126 | MR

[12] A.A. Kornev, “The method of asymptotic stabilization to a given trajectory based on a correction of the initial data”, Comput. Math. Math. Phys., 46:1 (2006), 34–48 | DOI | MR | Zbl

[13] A.A Ivanchikov, “On numerical stabilizations of unstable Couette flow by the boundary condition”, Russ. J. Numer. Anal. and Math. Modelling, 21:6 (2006), 519–537 | DOI | MR | Zbl

[14] A.A. Ivanchikov, A.A. Kornev, A.V. Ozeritskii, “On a new approach to asymptotic stabilization problems”, Comp. Math. and Math. Phys., 49:12 (2009), 2070–2084 | DOI | MR

[15] A.A. Kornev, “Numerical aspects of a problem asymptotic stabilization by the right-hand side”, Russ. J. Numer. Anal. and Math. Modelling, 23:4 (2008), 407–422 | DOI | MR | Zbl

[16] A.V. Fursikov, “Real Processes and Realizability of a Stabilization Method for Navier-Stokes Equations by Boundary Feedback Control”, Nonlinear Problems in Mathematical Physics and Related Topics II, In Honor of Professor O. A.Ladyzhenskaya, Kluwer/Plenum Publishers, New-York–Boston–Dordrecht–London–Moscow, 137–177 | MR | Zbl

[17] O.A. Ladyzhenskaya, V.A. Solonnikov, “O printsipe linearizatsii i invariantnyh mnogoobraziiah dlia zadach magnitnoi gidrodinamiki”, Zap. Nauchn. cem. LOMI, 38, 1973, 46–93 | Zbl

[18] D.V. Anosov, “A multidimentional analog of a theorem of Hadamard”, Nauchn. Dokl. Vyssh. Shkoly Fiz.-Mat. Nauki, 1959, no. 1, 3–12

[19] Ya.B. Pesin, “Characteristic Lyapunov Exponents and Smooth Ergodic Theory”, Usp. Mat. Nauk, 32:4(196) (1977), 55–112 | Zbl