Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_11_a3, author = {M. A. Zaitsev and S. A. Karabasov}, title = {CABARET scheme for computational modelling of linear elastic deformation problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {53--70}, publisher = {mathdoc}, volume = {29}, number = {11}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_11_a3/} }
TY - JOUR AU - M. A. Zaitsev AU - S. A. Karabasov TI - CABARET scheme for computational modelling of linear elastic deformation problems JO - Matematičeskoe modelirovanie PY - 2017 SP - 53 EP - 70 VL - 29 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_11_a3/ LA - ru ID - MM_2017_29_11_a3 ER -
M. A. Zaitsev; S. A. Karabasov. CABARET scheme for computational modelling of linear elastic deformation problems. Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 53-70. http://geodesic.mathdoc.fr/item/MM_2017_29_11_a3/
[1] E.N. Vedeniapin, V.N. Kukudzhanov, “Metod chislennogo integrirovania nestatsionarnykh zadach dinamiki uprugoi sredy”, Zh. vychisl. matem. I matem. fiz., 21:5 (1981), 1233–1248 | Zbl
[2] I.B. Petrov, A.S. Kholodov, “Chislennoe issledovanie nekotorych dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharacteristicheskim metodom”, Zh. vychisl. matem. I matem. fiz., 24:5 (1984), 722–739 | Zbl
[3] V.D. Ivanov, V.I. Kondaurov, I.B. Petrov, A.S. Kholodov, “Raschet dinamicheskogo deformirovaniia i razrusheniia uprugoplasticheskikh tel setochnokharacteristicheskimi metodami”, Matem. Model., 2:11 (1990), 10–29 | Zbl
[4] A.V. Vasyukov, A.S. Ermakov, A.P. Potapov, I.B. Petrov, A.V. Favorskaya, A. V. Shevtsov, “Combined Grid-Characteristic Method for the Numerical Solution of Three-Dimensional Dynamical Elastoplastic Problems”, Comp. Math. Math. Phys., 54:7 (2014), 1176–1189 | DOI | MR | Zbl
[5] V.A. Miryaha, A.V. Sannikov, I. B. Petrov, “Discontinuous Galerkin Method for Numerical Simulation of Dynamic Processes in Solids”, Math Models. Comp. Simul., 7:5 (2015), 446–455 | DOI | MR
[6] M. Dumbser, I. Peshkov, E. Romenski, O. Zanotti, “High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conductiong fluids and elastic solids”, J. of Computational Physics, 314 (2016), 864–862 | DOI | MR
[7] V.M. Goloviznin, M.A. Zaitsev, S.A. Karabasov, I.A. Korotkin, Novye algoritmy vychislitelnoi gidrodinamiki dlia mnogoprotsessornykh vychislitelnykh kompleksov, Izd-vo MGU, M., 2013
[8] V. Goloviznin, “Balanced characteristic method for systems of hyperbolic conservation laws”, Doklady Math., 72 (2005), 619–623
[9] A. Iserles, “Generalized Leapfrog methods”, IMA J. Numer. Anal., 1986, no. 6, 381–392 | DOI | MR | Zbl
[10] P.L. Roe, “Linear bicharacteristic schemes without dissipation”, SIAM J. Sci. Comput., 19 (1998), 1405–1427 | DOI | MR | Zbl
[11] V.M. Goloviznin, A.A. Samarskii, “Difference approximation of convective transport with spatial splitting of time derivative”, Math. Model., 1998, no. 10, 86–100 | MR | Zbl
[12] V.M. Goloviznin, A.A. Samarskii, “Some properties of the CABARET scheme”, Math. Model., 1998, no. 10, 101–116 | MR | Zbl
[13] S. Karabasov, V. Goloviznin, “Compact Accurately Boundary-Adjusting high-Resolution Technique for fluid dynamics”, Journal of Computational Physics, 228:19 (2009), 7426–7451 | DOI | MR | Zbl
[14] V.V. Ostapenko, “On the strong monotonicity of the CABARET scheme”, Computational Mathematics and Mathematical Physics, 52:3 (2012), 387–399 | DOI | MR | Zbl
[15] N.A. Zyuzina, V.V. Ostapenko, “Modification of the CABARET scheme ensuring its strong monotonicity and high accuracy on local extrema”, Doklady Mathematics, 90:1 (2014), 453–457 | DOI | MR | Zbl
[16] V.M. Goloviznin, V.N. Semenov, I.A. Korotkin, S. A. Karabasov, “A novel computational method for modelling stochastic advection in heterogeneous media”, Transport in Porous Media, 66:3 (2007), 439–456 | DOI | MR
[17] S.A. Karabasov, V.M. Goloviznin, “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA J., 45 (2007), 2861–2871 | DOI
[18] V.M. Goloviznin, M.A. Zaitsev, S. A. Karabasov, “A highly scalable hybrid mesh CABARET MILES method for MATIS-H problem”, Proc. of the CFD4NRS-4 WORKSHOP (Daejon, South Korea, 2012), 104 | Zbl
[19] V. Semiletov, S. Karabasov, “CABARET scheme with conservation-flux asynchronous time-stepping for nonlinear aeroacoustics problems”, J. of Computational Physics, 253 (2013), 157–165 | DOI | MR | Zbl
[20] G.A. Faranosov, V.M. Goloviznin, S.A. Karabasov, V.G. Kondakov, V.F. Kopiev, M. A. Zaitsev, “CABARET method on unstructured hexahedral grids for jet noise computation”, Computers and Fluids, 88 (2013), 165–179 | DOI
[21] A.P. Markesteijn, V. Semiletov, S. A. Karabasov, “GPU CABARET Solutions for the SILOET Jet Noise Experiment: Flow and Noise Modelling”, 22nd AIAA/CEAS Aeroacoustics Conference, Aeroacoustics Conferences, AIAA 2016-2967
[22] M.L. Wilkins, Computer Simulation of Dynamic Phenomena, Springer-Verlag, Berlin–Heidelberg–New York, 1999 | MR | Zbl
[23] N.I. Drobyshevskii, M.A. Zaitsev, A.S. Fillipov, Konechno-elementnoe modelirovanie teplovogo I mekhanicheskogo vozdeistviia na obiekty i konstruktsii atomnoi tekhniki, Preprint IBRAE, 1993
[24] M.B. Bakirov, M.A. Zaitsev, I.V. Frolov, “Matematicheskoe modelirovanie protsessov identirovaniia sfery v uprugoplasticheskoe poluprostranstvo”, Zavodskaia laboratoriia, 67:1 (2001), 37–47
[25] M.A. Zaitsev, S.M. Goldberg, “Matematicheskoe modelirovanie vzaimodeistviia detoniruiushchikh sred s uprugimi obolochrami”, Matem. Modelirovanie, 5:6 (1993), 56–68 | Zbl
[26] H. Lamb, “On the propagation of tremors over thes urface of an elastic solid”, Phil. Trans. R. Soc. Lond., Ser. A, 203 (1904), 1–42 | DOI
[27] M. Kaser, M. Dumbser, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms”, Geophys. J. Int., 166 (2006), 855–877 | DOI