Temperature field in the vicinity of maximum friction surfaces in viscoplasticity
Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 105-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The velocity field is singular in the vicinity of maximum friction surfaces for several rigid plastic solids. In particular, the quadratic invariant of the strain rate tensor approaches infinity in the vicinity of such surfaces and the strain rate intensity factor controls the magnitude of the second invariant of the strain rate tensor in a narrow region near the friction surface. Moreover, the strain rate intensity factor controls the magnitude of the plastic work rate in this narrow region near frictional interfaces and thus affects the temperature field in this region. However, numerical modeling of corresponding boundary value problems by means of standard finite element methods is impossible since the velocity field is singular. Therefore, an asymptotic representation of the temperature field in the vicinity of maximum friction surfaces is derived in the present paper adopting a viscoplastic material model with a saturation stress. An applied aspect of the present study is that a narrow layer with drastically modified properties is generated in the vicinity of frictional interfaces in deformation processes. This layer affects the quality of final products. It is known that the generation of this layer is controlled by plastic deformation and temperature. There are models that account for the effect of plastic deformation on the generation of the layer with drastically modified properties by means of the strain rate intensity factor. The results of the present study can be used to extend these models to account for the effect of temperature on the generation of the layer with drastically modified properties near frictional interfaces.
Mots-clés : friction
Keywords: singularity, temperature, viscoplasticity, asymptotics.
@article{MM_2017_29_10_a9,
     author = {E. A. Lyamina and O. V. Novozhilova},
     title = {Temperature field in the vicinity of maximum friction surfaces in viscoplasticity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {29},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_10_a9/}
}
TY  - JOUR
AU  - E. A. Lyamina
AU  - O. V. Novozhilova
TI  - Temperature field in the vicinity of maximum friction surfaces in viscoplasticity
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 105
EP  - 112
VL  - 29
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_10_a9/
LA  - ru
ID  - MM_2017_29_10_a9
ER  - 
%0 Journal Article
%A E. A. Lyamina
%A O. V. Novozhilova
%T Temperature field in the vicinity of maximum friction surfaces in viscoplasticity
%J Matematičeskoe modelirovanie
%D 2017
%P 105-112
%V 29
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_10_a9/
%G ru
%F MM_2017_29_10_a9
E. A. Lyamina; O. V. Novozhilova. Temperature field in the vicinity of maximum friction surfaces in viscoplasticity. Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 105-112. http://geodesic.mathdoc.fr/item/MM_2017_29_10_a9/

[1] D. Umbrello, I.S. Jawahir, “Numerical modeling of the influence of process parameters and workpiece hardness on white layer formation in AISI 52100 steel”, Int. J. Adv. Manuf. Technol., 44 (2009), 955–968 | DOI

[2] D. Umbrello, A.D. Jayal, S. Caruso, O.W. Dillon, I.S. Jawahir, “Modeling of white and dark layer formation in hard machining of AISI 52100 bearing steel”, Mach. Sci. Technol., 14 (2010), 128–147 | DOI

[3] D.-H. Cho, S.-A. Lee, Y.-Z. Lee, “Mechanical properties and wear behavior of the white layer”, Tribol. Lett., 45 (2012), 123–129 | DOI

[4] S.C. Veldhuis, G.K. Dosbaeva, A. Elfizy, G.S. Fox-Rabinovich, T. Wagg, “Investigations of white layer formation during machining of powder metallurgical Ni-based ME 16 superalloy”, J. Mater. Eng. Perform., 19 (2010), 1031–1036 | DOI

[5] T. Murai, S. Matsuoka, S. Miyamoto, Y. Oki, “Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions”, J. Mater. Process. Technol., 141 (2003), 207–212 | DOI

[6] R. Pantani, I. Coccorullo, V. Speranza, G. Titomanlio, “Modeling of morphology evolution in the injection molding process of thermoplastic polymers”, Progress in Polymer Science, 30 (2005), 1185–1222 | DOI

[7] S. Kajino, M. Asakawa, “Effect of “additional shear strain layer” on tensile strength and microstructure of fine drawn wire”, J. Mater. Process. Technol., 177 (2006), 704–708 | DOI

[8] T.A. Trunina, E.A. Kokovikhin, “Formirovanie melkodispersnoi struktury v poverkhnostnykh sloiakh stali pri kombinirovannoi obrabotke s primeneniem gidropressovaniia”, Probl. mashinostr. nadezhn. mashin., 2008, no. 2, 71–74

[9] S.E. Aleksandrov, D.Z. Grabko, O.A. Shikimaka, “K opredeleniiu tolshchiny sloia intensivnykh deformatsii v okrestnosti poverkhnosti treniia v protsessakh obrabotki metallov davleniem”, Probl. mashinostr. nadezhn. mashin, 2009, no. 3, 72–78

[10] Y.-T. Kim, K. Ikeda, “Flow behavior of the billet surface layer in porthole die extrusion of aluminum”, Metallurg. Mater. Trans., 31A (2000), 1635–1643 | DOI

[11] T.T. Sasaki, R.A. Morris, G.B. Thompson, Y. Syarif, D. Fox, “Formation of ultra-fine copper grains in copper-clad aluminum wire”, Scripta Mater., 63 (2010), 488–491 | DOI

[12] S. Alexandrov, Y.-M. Hwang, T.-H. Huang, “Manufacture of Gradient Microstructures of Magnesium Alloys Using Two – Stage Extrusion Dies”, Steel Res. Int., 86:8 (2015), 956–961 | DOI

[13] S. Alexandrov, Y.-R. Jeng, Y.-M. Hwang, “Generation of a Fine Grain Layer in the Vicinity of Frictional Interfaces in Direct Extrusion of AZ31 Alloy”, ASME J. Manuf. Sci. Eng., 137:5 (2015), 051003 | DOI

[14] B.J. Griffiths, “Mechanisms of white layer generation with reference to machining and deformation processes”, Trans. ASME J. Trib., 109 (1987), 525–530 | DOI

[15] S.E. Aleksandrov, R.V. Goldshtein, “Podkhod k predskazaniiu formirovaniia mikrostruktury materiala vblizi poverkhnostei treniia pri razvitykh plasticheskikh deformatsiiakh”, Fiz. Mezomekh., 17:5 (2014), 15–20

[16] S.Ye. Aleksandrov, R.V. Gol'dshteyn, “K postroyeniiu opredeliaiushchikh uravnenii v tonkom sloe materiala vblizi poverkhnostei treniia v protsessakh obrabotki materialov davleniem”, Dokl. RAN, 460:3 (2015), 283–285 | DOI

[17] S. Alexandrov, O. Richmond, “Singular plastic flow fields near surfaces of maximum friction stress”, Int. J. Non-Linear Mech., 36:1 (2001), 1–11 | DOI | MR | Zbl

[18] J.C. Viana, “Development of the skin layer in injection moulding: phenomenological model”, Polymer, 45 (2004), 993–1005 | DOI

[19] S. Alexandrov, Y. Mustafa, “Singular solutions in viscoplasticity under plane strain conditions”, Meccanica, 48:9 (2013), 2203–2208 | DOI | MR | Zbl

[20] S. Alexandrov, Y. Mustafa, “Quasi-static axially symmetric viscoplastic flows near very rough walls”, Appl. Math. Model., 39:15 (2015), 4599–4606 | DOI | MR

[21] S.A. Shesterikov, M.A. Iumasheva, “Konkretizatsiia uravneniia sostoianiia v teorii polzuchesti”, Izv. AN SSSR, MTT, 1984, no. 1, 86–91

[22] J.G. Oldroyd, “Non-Newtonian flow of liquids and solids”, Rheology: Theory and Applications, v. 1, ed. F.R. Eirich, Academic Press, New York, 1956, 653–682 | MR

[23] T.-P. Fries, T. Belytschko, “The extended/generalized finite element method: an overview of the method and its applications”, Int. J. Numer. Meth. Eng., 84 (2010), 253–304 | MR | Zbl