Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_10_a9, author = {E. A. Lyamina and O. V. Novozhilova}, title = {Temperature field in the vicinity of maximum friction surfaces in viscoplasticity}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {105--112}, publisher = {mathdoc}, volume = {29}, number = {10}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_10_a9/} }
TY - JOUR AU - E. A. Lyamina AU - O. V. Novozhilova TI - Temperature field in the vicinity of maximum friction surfaces in viscoplasticity JO - Matematičeskoe modelirovanie PY - 2017 SP - 105 EP - 112 VL - 29 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_10_a9/ LA - ru ID - MM_2017_29_10_a9 ER -
E. A. Lyamina; O. V. Novozhilova. Temperature field in the vicinity of maximum friction surfaces in viscoplasticity. Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 105-112. http://geodesic.mathdoc.fr/item/MM_2017_29_10_a9/
[1] D. Umbrello, I.S. Jawahir, “Numerical modeling of the influence of process parameters and workpiece hardness on white layer formation in AISI 52100 steel”, Int. J. Adv. Manuf. Technol., 44 (2009), 955–968 | DOI
[2] D. Umbrello, A.D. Jayal, S. Caruso, O.W. Dillon, I.S. Jawahir, “Modeling of white and dark layer formation in hard machining of AISI 52100 bearing steel”, Mach. Sci. Technol., 14 (2010), 128–147 | DOI
[3] D.-H. Cho, S.-A. Lee, Y.-Z. Lee, “Mechanical properties and wear behavior of the white layer”, Tribol. Lett., 45 (2012), 123–129 | DOI
[4] S.C. Veldhuis, G.K. Dosbaeva, A. Elfizy, G.S. Fox-Rabinovich, T. Wagg, “Investigations of white layer formation during machining of powder metallurgical Ni-based ME 16 superalloy”, J. Mater. Eng. Perform., 19 (2010), 1031–1036 | DOI
[5] T. Murai, S. Matsuoka, S. Miyamoto, Y. Oki, “Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions”, J. Mater. Process. Technol., 141 (2003), 207–212 | DOI
[6] R. Pantani, I. Coccorullo, V. Speranza, G. Titomanlio, “Modeling of morphology evolution in the injection molding process of thermoplastic polymers”, Progress in Polymer Science, 30 (2005), 1185–1222 | DOI
[7] S. Kajino, M. Asakawa, “Effect of “additional shear strain layer” on tensile strength and microstructure of fine drawn wire”, J. Mater. Process. Technol., 177 (2006), 704–708 | DOI
[8] T.A. Trunina, E.A. Kokovikhin, “Formirovanie melkodispersnoi struktury v poverkhnostnykh sloiakh stali pri kombinirovannoi obrabotke s primeneniem gidropressovaniia”, Probl. mashinostr. nadezhn. mashin., 2008, no. 2, 71–74
[9] S.E. Aleksandrov, D.Z. Grabko, O.A. Shikimaka, “K opredeleniiu tolshchiny sloia intensivnykh deformatsii v okrestnosti poverkhnosti treniia v protsessakh obrabotki metallov davleniem”, Probl. mashinostr. nadezhn. mashin, 2009, no. 3, 72–78
[10] Y.-T. Kim, K. Ikeda, “Flow behavior of the billet surface layer in porthole die extrusion of aluminum”, Metallurg. Mater. Trans., 31A (2000), 1635–1643 | DOI
[11] T.T. Sasaki, R.A. Morris, G.B. Thompson, Y. Syarif, D. Fox, “Formation of ultra-fine copper grains in copper-clad aluminum wire”, Scripta Mater., 63 (2010), 488–491 | DOI
[12] S. Alexandrov, Y.-M. Hwang, T.-H. Huang, “Manufacture of Gradient Microstructures of Magnesium Alloys Using Two – Stage Extrusion Dies”, Steel Res. Int., 86:8 (2015), 956–961 | DOI
[13] S. Alexandrov, Y.-R. Jeng, Y.-M. Hwang, “Generation of a Fine Grain Layer in the Vicinity of Frictional Interfaces in Direct Extrusion of AZ31 Alloy”, ASME J. Manuf. Sci. Eng., 137:5 (2015), 051003 | DOI
[14] B.J. Griffiths, “Mechanisms of white layer generation with reference to machining and deformation processes”, Trans. ASME J. Trib., 109 (1987), 525–530 | DOI
[15] S.E. Aleksandrov, R.V. Goldshtein, “Podkhod k predskazaniiu formirovaniia mikrostruktury materiala vblizi poverkhnostei treniia pri razvitykh plasticheskikh deformatsiiakh”, Fiz. Mezomekh., 17:5 (2014), 15–20
[16] S.Ye. Aleksandrov, R.V. Gol'dshteyn, “K postroyeniiu opredeliaiushchikh uravnenii v tonkom sloe materiala vblizi poverkhnostei treniia v protsessakh obrabotki materialov davleniem”, Dokl. RAN, 460:3 (2015), 283–285 | DOI
[17] S. Alexandrov, O. Richmond, “Singular plastic flow fields near surfaces of maximum friction stress”, Int. J. Non-Linear Mech., 36:1 (2001), 1–11 | DOI | MR | Zbl
[18] J.C. Viana, “Development of the skin layer in injection moulding: phenomenological model”, Polymer, 45 (2004), 993–1005 | DOI
[19] S. Alexandrov, Y. Mustafa, “Singular solutions in viscoplasticity under plane strain conditions”, Meccanica, 48:9 (2013), 2203–2208 | DOI | MR | Zbl
[20] S. Alexandrov, Y. Mustafa, “Quasi-static axially symmetric viscoplastic flows near very rough walls”, Appl. Math. Model., 39:15 (2015), 4599–4606 | DOI | MR
[21] S.A. Shesterikov, M.A. Iumasheva, “Konkretizatsiia uravneniia sostoianiia v teorii polzuchesti”, Izv. AN SSSR, MTT, 1984, no. 1, 86–91
[22] J.G. Oldroyd, “Non-Newtonian flow of liquids and solids”, Rheology: Theory and Applications, v. 1, ed. F.R. Eirich, Academic Press, New York, 1956, 653–682 | MR
[23] T.-P. Fries, T. Belytschko, “The extended/generalized finite element method: an overview of the method and its applications”, Int. J. Numer. Meth. Eng., 84 (2010), 253–304 | MR | Zbl