Numerical simulation of flow past two moving circular airfoils by using the LS-STAG immersed boundary method
Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 60-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modification of the LS-STAG immersed boundary method for numerical simulation in coupled hydroelastic problems is developed. This algorithm is implemented in the «LS-STAG_turb» software package. Results of flow past two moving circular airfoils numerical simulation are presented.
Keywords: viscous incompressible flow, coupled hydroelastic problems, immersed boundary methods, the LS-STAG method, ALE method.
@article{MM_2017_29_10_a5,
     author = {V. V. Puzikova},
     title = {Numerical simulation of flow past two moving circular airfoils by using the {LS-STAG} immersed boundary method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {60--74},
     publisher = {mathdoc},
     volume = {29},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_10_a5/}
}
TY  - JOUR
AU  - V. V. Puzikova
TI  - Numerical simulation of flow past two moving circular airfoils by using the LS-STAG immersed boundary method
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 60
EP  - 74
VL  - 29
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_10_a5/
LA  - ru
ID  - MM_2017_29_10_a5
ER  - 
%0 Journal Article
%A V. V. Puzikova
%T Numerical simulation of flow past two moving circular airfoils by using the LS-STAG immersed boundary method
%J Matematičeskoe modelirovanie
%D 2017
%P 60-74
%V 29
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_10_a5/
%G ru
%F MM_2017_29_10_a5
V. V. Puzikova. Numerical simulation of flow past two moving circular airfoils by using the LS-STAG immersed boundary method. Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 60-74. http://geodesic.mathdoc.fr/item/MM_2017_29_10_a5/

[1] Kaplunov S. M., Val'es N. G., Chentsova N. A., Fursov V. Yu., “A Mathematical Model for the Fluidelastic Mechanism Exciting Vibrations in a System of Blunt Bodies Placed in Cross Flow of Liquid”, Thermal Engineering, 59:6 (2012), 462–467 | DOI

[2] Williamson C. H. K., Govardhan R., “Vortex-induced vibrations”, Annu. Rev. Fluid Mech., 36 (2004), 413–455 | DOI | MR | Zbl

[3] Mittal R., Iaccarino G., “Immersed boundary methods”, Annu. Rev. Fluid Mech., 37 (2005), 239–261 | DOI | MR | Zbl

[4] Cheny Y., Botella O., “The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties”, J. Comput. Phys., 229 (2010), 1043–1076 | DOI | MR | Zbl

[5] Donea J., Huerta A., Ponthot J.-Ph., Rodriguez-Ferran A., “Arbitrary Lagrangian-Eulerian methods”, Encyclopedia of Computational Mechanics. Fundamentals, v. 1, 2004, 413–437

[6] Marchevskii I. K., Puzikova V. V., “Issledovanie effektivnosti rasparallelivaniia vychisle-nii pri mode-lirovanii techenii viazkoi neszhimaemoi sredy metodom LS-STAG na sistemakh s obshchei pamiatiu”, Vychislitelnye metody i programmirovanie, 16 (2015), 595–606 | Zbl

[7] Fletcher C., Computational Techniques for Fluid Dynamics, v. 2, Springer-Verlag, 1991 | MR | Zbl

[8] Osher S., Fedkiw R. P., Level set methods and dynamic implicit surfaces, Springer, N.Y., 2003, 273 pp. | MR | Zbl

[9] Lesoinne M., Farhat C., “Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations”, Comput. Method Appl. Mech. Eng., 134 (2003), 71–90 | DOI

[10] Saad Y., Iterative Methods for Sparse Linear Systems, PWS Publ., N.Y., 1996, 547 pp. | MR | Zbl

[11] Marchevskii I. K., Puzikova V. V., “Numerical Simulation Of The Flow Around Two Fixed Circular Airfoils Positioned In Tandem Using The Ls-Stag Method”, Journal of Machinery Manufacture and Reliability, 45:2 (2016), 130–136 | DOI

[12] Chan A. S., Jameson A., “Suppression of the unsteady vortex wakes of a circular cylinder pair by a doublet-like counter-rotation”, Int. J. Numer. Meth. Fluids, 63 (2010), 22–39 | DOI | Zbl

[13] Mittal S., Kumar V., “Flow-induced oscillations of two cylinders in tandem and staggered arrangements”, J. Fluids Struct., 15 (2001), 717–736 | DOI

[14] Mittal S., Kumar V., “Vortex induced vibrations of a pair of cylinders at Reynolds number 1000”, Int. J. Comput. Fluid Dyn., 18 (2004), 601–614 | DOI | Zbl

[15] Klamo J. T., Leonard A., Roshko A., “On the maximum amplitude for a freely vibrating cylinder in cross flow”, J. of Fluids and Structures, 21 (2005), 429–434 | DOI