Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_10_a2, author = {K. S. Kuzmina and I. K. Marchevskii and V. S. Moreva}, title = {Vortex sheet intensity computation in incompressible flow simulation around airfoil by using vortex methods}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {20--34}, publisher = {mathdoc}, volume = {29}, number = {10}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_10_a2/} }
TY - JOUR AU - K. S. Kuzmina AU - I. K. Marchevskii AU - V. S. Moreva TI - Vortex sheet intensity computation in incompressible flow simulation around airfoil by using vortex methods JO - Matematičeskoe modelirovanie PY - 2017 SP - 20 EP - 34 VL - 29 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_10_a2/ LA - ru ID - MM_2017_29_10_a2 ER -
%0 Journal Article %A K. S. Kuzmina %A I. K. Marchevskii %A V. S. Moreva %T Vortex sheet intensity computation in incompressible flow simulation around airfoil by using vortex methods %J Matematičeskoe modelirovanie %D 2017 %P 20-34 %V 29 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_10_a2/ %G ru %F MM_2017_29_10_a2
K. S. Kuzmina; I. K. Marchevskii; V. S. Moreva. Vortex sheet intensity computation in incompressible flow simulation around airfoil by using vortex methods. Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 20-34. http://geodesic.mathdoc.fr/item/MM_2017_29_10_a2/
[1] S.M. Belotserkovskii, I.K. Lifanov, Chislennye metody v singuliarnykh integralnykh uravneniiakh i ikh primenenie, Nauka, M., 1985, 256 pp. | MR
[2] S.M. Belotserkovskii, V.N. Kotovskii, M.I. Nisht, R.M. Fedorov, Matematicheskoe modelirovanie ploskoparallelnogo obtekaniia tel, Nauka, M., 1988, 231 pp. | MR
[3] I.K. Lifanov, Singular Integral Equations and Discrete Vortices, VSP, Utrecht, The Netherlands, 1996, 476 pp. | MR | MR | Zbl
[4] G.-H. Cottet, P.D. Koumoutsakos, Vortex Methods: Theory and Practice, Cambridge University Press, Cambridge, 2000, 354 pp. | MR
[5] R.I. Lewis, Vortex Element Methods For Fluid Dynamic Analysis Of Engineering Systems, Cambridge University Press, Cambridge, 2005, 592 pp.
[6] P.R. Andronov, S.V. Guverniuk, G.Ia. Dynnikova, Vikhrevye metody rascheta nestatsionarnykh gidrodynamicheskykh nagruzok, Izdatelstvo Moskovskogo universiteta, M., 2006, 184 pp.
[7] M.A. Golovkin, V.A. Golovkin, V.M. Kaliavkin, Voprosy vikhrevoi gidrodinamiki, Fizmatlit, M., 2009, 264 pp.
[8] P. Degond, S. Mas-Gallic, “The weighted particle method for convection-diffusion equations. Part 1: The case of an isotropic viscosity”, Mathematics of Computation, 53 (1989), 485–507 | MR | Zbl
[9] S. Mas-Gallic, P.A. Raviart, Particle approximation of convection diffusion problems, Internal Rep. R86013, Lab. Anal. Num., Univ. Pierre et Marie Curie, Paris, 1986; C. R. Acad. Sci., Paris, ser. I, 305
[10] M. Gazzola, P. Chatelain, W. M. van Rees, P. Koumoutsakos, “Simulations of single and multiple swimmers with non-divergence free deforming geometries”, Journal of Computational Physics, 230:10 (2011), 7093–7114 | DOI | MR | Zbl
[11] Y. Ogami, T. Akamatsu, “Viscous flow simulation using the discrete vortex model. The Diffusion Velocity Method”, Computers and Fluids, 19:3/4 (1991), 433–441 | DOI | Zbl
[12] G.Ya. Dynnikova, “Dvizhenie vikhrei v dvumernykh techeniyakh vyazkoi zhidkosti”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 2003, no. 5, 11–19 | MR | Zbl
[13] G.Ya. Dynnikova, “Lagranzhev podkhod k resheniyu nestatsionarnykh uravnenii Nave–Stoksa”, Doklady Akademii nauk, 399:1 (2004), 42–46 | MR
[14] A. Colagrossi, G. Graziani, M. Pulvirenti, “Particles for fluids: SPH versus Vortex methods”, Mathematics and mechanics of complex systems, 2:1 (2014), 45–70 | DOI | MR | Zbl
[15] S.N. Kempka, M.W. Glass, J.S. Peery, J.H. Strickland, Accuracy Considerations for Implementing Velocity Boundary Conditions in Vorticity Formulations, Sandia rep., SAND96-0583 UC-700, 1996
[16] H. Lamb, Hydrodynamics, Dover publ., New-York, 1945, 762 pp.
[17] V.S. Moreva, Matematicheskoe modelirovanie obtekaniia profilei s ispolzovaniem novykh raschetnykh skhem metoda vikhrevykh elementov, Dis. ... kand. fiz.-mat. nauk, M., 2013, 130 pp.
[18] I.K. Marchevsky, V.S. Moreva, “Vortex Element Method for 2D Flow Simulation with Tangent Velocity Components on Airfoil Surface”, ECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers, 2012, 5952–5965