Vortex sheet intensity computation in incompressible flow simulation around airfoil by using vortex methods
Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 20-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical scheme is developed for flow around airfoils simulation by using vortex methods. For this scheme numerical algorithm is built, exact analytical expressions are obtained for the coefficients of linear algebraic equations system. For some test problems, it is shown that the developed scheme allows to solve wider class of problems and provides much more accurate results in comparison with known approaches.
Keywords: 2D flow, vortex method, integral equation, no-slip condition.
Mots-clés : incompressible media, airfoil
@article{MM_2017_29_10_a2,
     author = {K. S. Kuzmina and I. K. Marchevskii and V. S. Moreva},
     title = {Vortex sheet intensity computation in incompressible flow simulation around airfoil by using vortex methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {20--34},
     publisher = {mathdoc},
     volume = {29},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_10_a2/}
}
TY  - JOUR
AU  - K. S. Kuzmina
AU  - I. K. Marchevskii
AU  - V. S. Moreva
TI  - Vortex sheet intensity computation in incompressible flow simulation around airfoil by using vortex methods
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 20
EP  - 34
VL  - 29
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_10_a2/
LA  - ru
ID  - MM_2017_29_10_a2
ER  - 
%0 Journal Article
%A K. S. Kuzmina
%A I. K. Marchevskii
%A V. S. Moreva
%T Vortex sheet intensity computation in incompressible flow simulation around airfoil by using vortex methods
%J Matematičeskoe modelirovanie
%D 2017
%P 20-34
%V 29
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_10_a2/
%G ru
%F MM_2017_29_10_a2
K. S. Kuzmina; I. K. Marchevskii; V. S. Moreva. Vortex sheet intensity computation in incompressible flow simulation around airfoil by using vortex methods. Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 20-34. http://geodesic.mathdoc.fr/item/MM_2017_29_10_a2/

[1] S.M. Belotserkovskii, I.K. Lifanov, Chislennye metody v singuliarnykh integralnykh uravneniiakh i ikh primenenie, Nauka, M., 1985, 256 pp. | MR

[2] S.M. Belotserkovskii, V.N. Kotovskii, M.I. Nisht, R.M. Fedorov, Matematicheskoe modelirovanie ploskoparallelnogo obtekaniia tel, Nauka, M., 1988, 231 pp. | MR

[3] I.K. Lifanov, Singular Integral Equations and Discrete Vortices, VSP, Utrecht, The Netherlands, 1996, 476 pp. | MR | MR | Zbl

[4] G.-H. Cottet, P.D. Koumoutsakos, Vortex Methods: Theory and Practice, Cambridge University Press, Cambridge, 2000, 354 pp. | MR

[5] R.I. Lewis, Vortex Element Methods For Fluid Dynamic Analysis Of Engineering Systems, Cambridge University Press, Cambridge, 2005, 592 pp.

[6] P.R. Andronov, S.V. Guverniuk, G.Ia. Dynnikova, Vikhrevye metody rascheta nestatsionarnykh gidrodynamicheskykh nagruzok, Izdatelstvo Moskovskogo universiteta, M., 2006, 184 pp.

[7] M.A. Golovkin, V.A. Golovkin, V.M. Kaliavkin, Voprosy vikhrevoi gidrodinamiki, Fizmatlit, M., 2009, 264 pp.

[8] P. Degond, S. Mas-Gallic, “The weighted particle method for convection-diffusion equations. Part 1: The case of an isotropic viscosity”, Mathematics of Computation, 53 (1989), 485–507 | MR | Zbl

[9] S. Mas-Gallic, P.A. Raviart, Particle approximation of convection diffusion problems, Internal Rep. R86013, Lab. Anal. Num., Univ. Pierre et Marie Curie, Paris, 1986; C. R. Acad. Sci., Paris, ser. I, 305

[10] M. Gazzola, P. Chatelain, W. M. van Rees, P. Koumoutsakos, “Simulations of single and multiple swimmers with non-divergence free deforming geometries”, Journal of Computational Physics, 230:10 (2011), 7093–7114 | DOI | MR | Zbl

[11] Y. Ogami, T. Akamatsu, “Viscous flow simulation using the discrete vortex model. The Diffusion Velocity Method”, Computers and Fluids, 19:3/4 (1991), 433–441 | DOI | Zbl

[12] G.Ya. Dynnikova, “Dvizhenie vikhrei v dvumernykh techeniyakh vyazkoi zhidkosti”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 2003, no. 5, 11–19 | MR | Zbl

[13] G.Ya. Dynnikova, “Lagranzhev podkhod k resheniyu nestatsionarnykh uravnenii Nave–Stoksa”, Doklady Akademii nauk, 399:1 (2004), 42–46 | MR

[14] A. Colagrossi, G. Graziani, M. Pulvirenti, “Particles for fluids: SPH versus Vortex methods”, Mathematics and mechanics of complex systems, 2:1 (2014), 45–70 | DOI | MR | Zbl

[15] S.N. Kempka, M.W. Glass, J.S. Peery, J.H. Strickland, Accuracy Considerations for Implementing Velocity Boundary Conditions in Vorticity Formulations, Sandia rep., SAND96-0583 UC-700, 1996

[16] H. Lamb, Hydrodynamics, Dover publ., New-York, 1945, 762 pp.

[17] V.S. Moreva, Matematicheskoe modelirovanie obtekaniia profilei s ispolzovaniem novykh raschetnykh skhem metoda vikhrevykh elementov, Dis. ... kand. fiz.-mat. nauk, M., 2013, 130 pp.

[18] I.K. Marchevsky, V.S. Moreva, “Vortex Element Method for 2D Flow Simulation with Tangent Velocity Components on Airfoil Surface”, ECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers, 2012, 5952–5965