Path coordinates in 3D path following problem
Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 5-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two approaches to 3D path coordinates using in path following problem for aerial vehicles are proposed. The first one consists in reducing to two dimensional case by means of projection. The second one is based on introducing of an adapted frame in the target point. The choice of an adapted frame detects a complexity of the control synthesis algorithm. It is shown that the parallel transport frame, or Bishop frame, is most convenient.
Keywords: path following, path coordinates, adapted frame, stabilized control.
@article{MM_2017_29_10_a1,
     author = {A.N. Kanatnikov and W. Liu and S. B. Tkachev},
     title = {Path coordinates in {3D} path following problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {29},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_10_a1/}
}
TY  - JOUR
AU  - A.N. Kanatnikov
AU  - W. Liu
AU  - S. B. Tkachev
TI  - Path coordinates in 3D path following problem
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 5
EP  - 19
VL  - 29
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_10_a1/
LA  - ru
ID  - MM_2017_29_10_a1
ER  - 
%0 Journal Article
%A A.N. Kanatnikov
%A W. Liu
%A S. B. Tkachev
%T Path coordinates in 3D path following problem
%J Matematičeskoe modelirovanie
%D 2017
%P 5-19
%V 29
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_10_a1/
%G ru
%F MM_2017_29_10_a1
A.N. Kanatnikov; W. Liu; S. B. Tkachev. Path coordinates in 3D path following problem. Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 5-19. http://geodesic.mathdoc.fr/item/MM_2017_29_10_a1/

[1] A.P. Aguiar, J.P. Hespanha, P.V. Kokotovic, “Performance limitations in reference tracking and path following for nonlinear systems”, Automatica, 44:3 (2008), 598–610 | DOI | MR | Zbl

[2] M. Sampei, T. Tamura, T. Itoh, M. Nakamichi, “Path tracking control of trailer-like mobile robot”, Proc. of IEEE/RSJ Workshop on Intelligent Robots Systems (Osaka, 1991), IEEE, 1991, 193–198 | DOI

[3] A. Micaelli, C. Samson, “Path following and time-varying feedback stabilization of a wheeled robot”, Proc. of the International conf. ICARCV'92 (1992)

[4] C. Samson, “Control of chained systems application to path following and time-varying point-stabilization of mobile robots”, IEEE transactions on Automatic Control, 40:1 (1995), 64–77 | DOI | MR | Zbl

[5] B. Thuilot, C. Cariou, P. Martinet, M. Berducat, “Automatic guidance of a farm tractor relying on a single CP-DGPS”, Autonomous Robots, 13 (2002), 53–61 | DOI

[6] Y. Xu, S.K.-W. Au, “Stabilization and path following of a single wheel robot”, IEEE/ASME Transactions on Mechatronics, 9:2 (2004), 407–419 | DOI

[7] R.F. Gilimyanov, A.V. Pesterev, L.B. Rapoport, “Motion Control for a Wheeled Robot Following a Curvilinear Path”, J. of Comp. and Systems Sciences Int., 47:6 (2008), 987–994 | DOI | Zbl

[8] A.V. Pesterev, L.B. Rapoport, “Stabilization Problem for a Wheeled Robot Following a Curvilinear Path on Uneven Terrain”, J. of Comp. and Systems Sciences Int., 49:4 (2010), 672–680 | DOI | MR | Zbl

[9] L. Lapierre, D. Soetanto, “Nonlinear path-following control of an AUV”, Ocean Engineering, 34:11–12 (2007), 1734–1744 | DOI

[10] P. Encarnacao, A. Pascoal, “3D path following for autonomous underwater vehicle”, Proc. of 39th IEEE Conf. on Decision and Control (2000)

[11] D.R. Nelson, D.B. Barber, T.W. McLain, R.W. Beard, “Vector field path following for small unmanned air vehicles”, 2006 American Control Conference (14–16 June 2006) | DOI

[12] G. Conte, S. Duranti, T. Merz, “Dynamic 3D path following for an autonomous helicopter”, Proc. of the IFAC Symp. on Intelligent Autonomous Vehicles (2004), 5–7

[13] L. Consolini, M. Maggiore, Ch. Nielsen, M. Tosques, “Path following for the PVTOL aircraft”, Automatica, 46:8 (2010), 1284–1296 | DOI | MR | Zbl

[14] I. Kaminer, A. Pascoal, E. Xargay, N. Hovakimyan, Ch. Cao, V. Dobrokhodov, “Path Following for Small Unmanned Aerial Vehicles Using L1 Adaptive Augmentation of Commercial Autopilots”, Journal of Guidance, Control, and Dynamics, 33:2 (2010), 550–564 | DOI | MR

[15] S.B. Tkachev, W. Liu, “Design of Path Following Method for Unmanned Aerial Vehicles using Normal Forms”, IFAC-PapersOnLine, 48:11 (2015), 10–15 | DOI

[16] A.N. Kanatnikov, T.S. Kasatkina, “Osobennosti perekhoda k putevym koordinatam v zadache putevoi stabilizatsii”, Nauka i obrazovanie. MGTU im. N.E. Baumana. Elektron. zhurn., 2012, no. 7

[17] M. Breivik, Th. I. Fossen, “Principles of Guidance-Based Path Following in 2D and 3D”, Proc. of the 44th IEEE Conf. on Decision and Control (2005), 627–634

[18] R.L. Bishop, “There is More than One Way to Frame a Curve”, The American Mathematical Monthly, 82:3 (1975), 246–251 | DOI | MR | Zbl

[19] A.N. Kanatnikov, A.P. Krishchenko, “Terminal Control of Spatial Motion of Flying Vehicles”, Journal of Computer and Systems Sciences International, 47:5 (2008), 718–731 | DOI | Zbl

[20] A. Isidori, Nonlinear Control Systems, 3rd ed., Springer-Verlag, London, 1995, 549 pp. | MR | Zbl

[21] V.I. Krasnoshchechenko, A.P. Krishchenko, Nelineinye sistemy: geometricheskie metody analiza i sinteza, Izd-vo MGTU im. N.E. Baumana, M., 2005, 520 pp.