About one discrete mathematical model of perfect fluid
Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 43-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a discrete mathematical model of motion of a perfect fluid. The fluid is represented as an ensemble of the same so-called liquid particles, which are in the form of extended geometry: circles and spheres for two-dimensional and three-dimensional cases, respectively. The mechanism of interaction between the liquid particles on a binary level and on the level of the $n$-cluster is formulated. The results of computational experiment to simulate various kinds of flows in two-dimensional and three-dimensional ensembles of liquid particles are presented.
Keywords: discrete model, perfect fluids, branch point, interaction in cluster, laws of conservation, stochastic and deterministic components of flow.
Mots-clés : liquid particle, turbulence
@article{MM_2016_28_9_a3,
     author = {K. E. Plokhotnikov},
     title = {About one discrete mathematical model of perfect fluid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--63},
     publisher = {mathdoc},
     volume = {28},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_9_a3/}
}
TY  - JOUR
AU  - K. E. Plokhotnikov
TI  - About one discrete mathematical model of perfect fluid
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 43
EP  - 63
VL  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_9_a3/
LA  - ru
ID  - MM_2016_28_9_a3
ER  - 
%0 Journal Article
%A K. E. Plokhotnikov
%T About one discrete mathematical model of perfect fluid
%J Matematičeskoe modelirovanie
%D 2016
%P 43-63
%V 28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_9_a3/
%G ru
%F MM_2016_28_9_a3
K. E. Plokhotnikov. About one discrete mathematical model of perfect fluid. Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 43-63. http://geodesic.mathdoc.fr/item/MM_2016_28_9_a3/

[1] Plokhotnikov K. E., “Ob odnoi matematicheskoi modeli turbulentnogo dvizheniia zhidkosti”, DAN SSSR, 301:4 (1988), 805–809 | Zbl

[2] Plokhotnikov K. E., “Ob odnoi matematicheskoi modeli turbulentnogo dvizheniia zhidkosti”, Matematicheskoe modelirovanie. Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matematiki, Nauka, M., 1989, 270–284

[3] Plokhotnikov K. E., “Numerical Description of the Fluid Pipe Motion with Multiscale Turbulence Model”, Vestnik Rossiskogo universiteta druzhby narodov. Seriia: Matematika, informatika, fizika, 2011, no. 4, 107–112

[4] Plokhotnikov K. E., Metod i iskusstvo matematicheskogo modelirovaniia, Kurs lektsii, Flinta, M., 2012, 518 pp.

[5] Plokhotnikov K. E., Razrabotka i obosnovanie novogo podkhoda k metodu matematicheskogo modelirovaniia: problema predmetnoi mnozhestvennosti modelei i analiz adekvatnosti ikh tseliam issledovaniia, Avtoref. diss. ... dokt. fiz.-mat. nauk, M., 2013, 41 pp.

[6] Sukop M. C., Thorne D. T., Lattice Boltzmann modeling. An Introduction for Geoscientists and Engineers, Springer, Berlin–Heidelberg–New York, 2007, 172 pp.

[7] Berezin S. B., Kargapoltsev I. S., Markovski N. D., Sakharnykh N. A., “Parallelnaia realizatsiia metoda raschshepleniia dlia sistemy iz neskolkikh GPU s primeneniem v zadachakh aerogidrodinamiki”, Informatsionnye tekhnologii. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 2012, no. 5(2), 246–252

[8] Hattory H., Nagano Y., “Investigation of turbulent boundary layer over forward-facing step via direct numerical simulation”, International J. of Heat and Fluid Flow, 31:3 (2010), 284–294 | DOI

[9] Kurien S., Taylor M. A., “Direct Numerical. Simulations of Turbulence”, Los Alamos Science Number, 2005, no. 29, 142–151

[10] Müller P., Formella A., Poschel T., “Granular jet impact: probing the ideal fluid description”, J. Fluid Mech., 751 (2014), 601–626 | DOI | MR

[11] Cheng X., Varas G., Citron D., Jaeger H. M., Nagel S. R., “Collective Behavior in a Granular Jet: Emergence of a Liquid with Zero Surface Tension”, Phys. Rev. Lett., 99 (2007), 188001(4) | DOI

[12] Ulam S., “Stability of many-body computation”, Hydrodynamic instability, eds. R. Bellman, G. Birkhoff, C. C. Lin, American Mathematical Society, 1962, 247–258 | DOI | MR | Zbl

[13] Pasta J. R., Ulam S., “Heuristic numerical work in some problems of hydrodynamics”, Math. Tables Aids Comp., 13:65 (1959), 1–12 | DOI | MR | Zbl

[14] Harlow F. H., “The Particle-in-cell computing method for fluid dynamics”, Methods in Computational Physics Advances in Research and Applications, eds. B. Alder, S. Fernbach, M. Rotenberg, Academic Press, NY–London, 1964, 319–343

[15] Belotserkovski O. M., Davydov Iu. M., Metod krupnykh chastits v gazovoy dinamike: Vychislitelny eksperiment, Nauka, M., 1982, 391 pp.

[16] Belotserkovski O. M., Oparin A. M., Chechetkin V. M., Turbulentnost: novye podkhody, Nauka, M., 2002, 286 pp.

[17] Hirt C. W., “An arbitrary Lagrangian Eulerian method”, Proceedings of the second International Conference on Numerical Methods in Fluids Dynamics, ed. M. Holt, Springer-Verlag, Berkeley–Berlin, 1971, 350–355 | DOI | Zbl

[18] Schulz W. D., “Two-dimensional Lagrangian hydrodynamic difference equations”, Methods in Computational Physics Advances in Research and Applications, eds. B. Alder, S. Fernbach, M. Rotenberg, Academic Press, NY–London, 1964, 1–45 | MR | Zbl

[19] Frank A. M., Diskretnye modeli neszhimaemoi zhidkosti, Fizmatlit, M., 2001, 224 pp.

[20] Landau L. D., Lifshits E. M., Course of Theoretical Physics, v. 6, Fluid Mechanics, Second Edition, Pergamon Press, 1987 | MR | Zbl

[21] Majda A. J., Bertozzi A. L., Vorticity and Incompressible Flow, Cambridge University Press, 2002, 545 pp. | MR | Zbl

[22] Plokhotnikov K. E., Razrabotka i obosnovanie novogo podkhoda k metodu matematicheskogo modelirovaniia: problema predmetnoi mnozhestvennosti modelei i analiz adekvatnosti ikh tseliam issledovaniia, Diss. ... dokt. fiz.-mat. nauk, 2013, M., 165

[23] Sinay Ya. G., Shilnikov L. P. (eds.), Strange Attractors, Mir, M., 1981, 253 pp. (Russia)

[24] Maxwell J. C., Trudy po kinetichesko teorii, Binom. Laboratoriia znanii, M., 2012, 406 pp.