About one discrete mathematical model of perfect fluid
Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 43-63

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a discrete mathematical model of motion of a perfect fluid. The fluid is represented as an ensemble of the same so-called liquid particles, which are in the form of extended geometry: circles and spheres for two-dimensional and three-dimensional cases, respectively. The mechanism of interaction between the liquid particles on a binary level and on the level of the $n$-cluster is formulated. The results of computational experiment to simulate various kinds of flows in two-dimensional and three-dimensional ensembles of liquid particles are presented.
Keywords: discrete model, perfect fluids, branch point, interaction in cluster, laws of conservation, stochastic and deterministic components of flow.
Mots-clés : liquid particle, turbulence
@article{MM_2016_28_9_a3,
     author = {K. E. Plokhotnikov},
     title = {About one discrete mathematical model of perfect fluid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--63},
     publisher = {mathdoc},
     volume = {28},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_9_a3/}
}
TY  - JOUR
AU  - K. E. Plokhotnikov
TI  - About one discrete mathematical model of perfect fluid
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 43
EP  - 63
VL  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_9_a3/
LA  - ru
ID  - MM_2016_28_9_a3
ER  - 
%0 Journal Article
%A K. E. Plokhotnikov
%T About one discrete mathematical model of perfect fluid
%J Matematičeskoe modelirovanie
%D 2016
%P 43-63
%V 28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_9_a3/
%G ru
%F MM_2016_28_9_a3
K. E. Plokhotnikov. About one discrete mathematical model of perfect fluid. Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 43-63. http://geodesic.mathdoc.fr/item/MM_2016_28_9_a3/