Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_9_a2, author = {R. V. Shamin and A. V. Yudin}, title = {Statistical characteristics of the anomalously large surface waves based on computational experiments}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {31--42}, publisher = {mathdoc}, volume = {28}, number = {9}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_9_a2/} }
TY - JOUR AU - R. V. Shamin AU - A. V. Yudin TI - Statistical characteristics of the anomalously large surface waves based on computational experiments JO - Matematičeskoe modelirovanie PY - 2016 SP - 31 EP - 42 VL - 28 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_9_a2/ LA - ru ID - MM_2016_28_9_a2 ER -
%0 Journal Article %A R. V. Shamin %A A. V. Yudin %T Statistical characteristics of the anomalously large surface waves based on computational experiments %J Matematičeskoe modelirovanie %D 2016 %P 31-42 %V 28 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_9_a2/ %G ru %F MM_2016_28_9_a2
R. V. Shamin; A. V. Yudin. Statistical characteristics of the anomalously large surface waves based on computational experiments. Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 31-42. http://geodesic.mathdoc.fr/item/MM_2016_28_9_a2/
[1] C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean, Springer, 2009, 216 pp. | MR | Zbl
[2] I. Nikolkina, I. Didenkulova, “Rogue waves in 2006–2010”, Nat. Hazards Earth Syst. Sci., 11 (2011), 2913–2924 | DOI | MR
[3] K. L. Henderson, D. H. Peregrine, J. W. Dold, “Unstready water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrodinger equation”, Wave Motion, 29 (1999), 341–361 | DOI | MR | Zbl
[4] W. J. D. Baterman, C. Swan, P. H. Taylor, “On the efficient numerical simulation of directionally spread surface water waves”, J. Comput. Physics, 174 (2001), 277–305 | DOI | MR
[5] A. I. Dyachenko, V. E. Zakharov, “On the Formation of Freak Waves on the Surface of Deep Water”, JETP Letters, 88:5 (2008), 307–311 | DOI | MR
[6] V. E. Zakharov, A. I. Dyachenko, R. V. Shamin, “How probability for freak wave formation can be found”, The European Physical Journal, 185:1, special topics (2010), 113–124 | DOI
[7] D. Chalikov, “Freak waves: Their occurrence and probability”, Phys. Fluids, 21:7 (2009) | DOI | Zbl
[8] V. E. Zakharov, R. V. Shamin, “Probability of the occurrence of freak waves”, JETP Letters, 91:2 (2010), 63–65 | DOI
[9] V. E. Zakharov, R. V. Shamin, “Statistics of rogue waves in computer experiments”, JETP Letters, 96:1 (2012), 66–69 | DOI
[10] R. V. Shamin, V. E. Zakharov, A. V. Yudin, “Energy portrait of rogue waves”, JETP Letters, 99:9 (2010), 514–517
[11] V. E. Zakharov, R. V. Shamin, A. V. Yudin, “Typical geometry of rogue waves”, Doklady Earth Sciences, 462:1 (2015), 484–486 | DOI | DOI
[12] R. V. Shamin, A. V. Yudin, “Simulation of spatiotemporal spread of rogue waves”, Doklady Earth Sciences, 448:2 (2013), 240–242 | DOI | DOI | Zbl
[13] A. A. Kurkin, E. N. Pelinovskii, Volny-ubiitsy: fakty, teoriya i modelirovanie, Nizhegorodskii Gos. Tekh. Universitet, Nizhnii Novgorod, 2004, 158 pp.
[14] D. V. Chalikov, “Statistika ekstremalnykh vetrovykh voln”, Fund. i prikl. gidrofizika, 5:1 (2012), 5–13
[15] L. V. Ovsyannikov, “K obosnovaniyu teorii melkoi vody”, Sb. nauch. tr., Dinamika sploshnoi sredy, 15, Akad. nauk SSSR, sib. otd-nie, In-t gidrodinamiki, Novosibirsk, 1973, 104–125
[16] J. C. Whitney, “The numerical solution of unsteady free-surface flows by conformal mapping”, Proc. Second Inter. Conf. on Numer. Fluid Dynamics, ed. M. Holt, Springer-Verlag, 1971, 458–462 | DOI
[17] D. Chalikov, D. Sheinin, “Modeling of Extreme Waves Based on Equations of Potential Flow with a Free Surface”, Journ. Comp. Phys., 210 (2005), 247–273 | DOI | MR | Zbl
[18] A. I. Dyachenko, V. E. Zakharov, E. A. Kuznetsov, “Nelineinaya dinamika svobodnoi poverkhnosti idealnoi zhidkosti”, Fizika plazmy, 1999, no. 10, 916–928
[19] V. P. Ruban, “Water waves over a time-dependent bottom: Exact description for 2D potential flows”, Phys. Lett. A, 340:1–4 (2005), 194–200 | DOI | MR | Zbl
[20] V. E. Zakharov, A. I. Dyachenko, O. A. Vasilyev, “New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface”, Eur. J. Mech. B Fluids, 21 (2002), 283–291 | DOI | MR | Zbl
[21] R. V. Shamin, “Ob odnom chislennom metode v zadache o dvizhenii idealnoi zhidkosti so svobodnoi poverkhnostyu”, Sib. zhurn. vych. mat., 9:4 (2006), 325–340 | Zbl
[22] R. V. Shamin, “On the existence of smooth solutions to the Dyachenko equations governing free-surface unsteady ideal fluid flows”, Doklady Mathematics, 73:1 (2006), 112–113 | DOI | MR | Zbl
[23] R. V. Shamin, Vychislitelnye eksperimenty v modelirovanii poverkhnostnykh voln v okeane, Nauka, M., 2008, 113 pp.
[24] R. V. Shamin, “Estimate of the existence time for solutions to the surface wave equation”, Doklady Mathematics, 77:1 (2008), 118–119 | DOI | MR | Zbl
[25] R. V. Shamin, “Solvability of equations describing waves of minimum smoothness”, Doklady Mathematics, 81:3 (2010), 436–438 | DOI | MR | MR | Zbl
[26] A. I. Zaitsev, A. E. Malashenko, E. N. Pelinovskii, “Anomalno bolshie volny vblizi yuzhnogo poberezhya o. Sakhalin”, Fundamentalnaya i prikladnaya gidrofizika, 4:4 (2011), 35–42