Statistical characteristics of the anomalously large surface waves based on computational experiments
Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 31-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In our computational experiments we simulate the two dimensional potential flow of ideal liquid with a free surface. We used results of these experiments for investigating statistics of occurrence of abnormally large surface waves in depending on initial parameters. The suddenness of the occurrence of abnormally large waves in the ocean defines serious danger that they pose to ships and marine buildings. Now we have incontrovertible evidence of this phenomenon such as the instrumental recordings and photographs. The main method of studying the phenomenon of rogue waves in our work is computational experiment that is based on the full nonlinear equations of hydrodynamics of ideal liquid with free surface. We apply the method of conformal variables to the original system of equations. This method allows doing efficient and accurate calculations using computers. According to the results of experiments investigated the statistics of occurrence of abnormally large surface waves. Using dissipation and pumping in these computational experiments will spend long calculations, which did not cease in case of rogue waves. Estimates were made of the intensity of the occurrence of the rogue waves, depending on the values of the squares of the average steepness and wave dispersion. It is shown that in doubling the calculated field intensity is nearly doubled. The proposed methods of computational experiments allows estimating the average waiting time of rogue waves in a given area.
Keywords: surface wave, abnormally large waves in the ocean, computer experiment.
Mots-clés : rogue waves
@article{MM_2016_28_9_a2,
     author = {R. V. Shamin and A. V. Yudin},
     title = {Statistical characteristics of the anomalously large surface waves based on computational experiments},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {28},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_9_a2/}
}
TY  - JOUR
AU  - R. V. Shamin
AU  - A. V. Yudin
TI  - Statistical characteristics of the anomalously large surface waves based on computational experiments
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 31
EP  - 42
VL  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_9_a2/
LA  - ru
ID  - MM_2016_28_9_a2
ER  - 
%0 Journal Article
%A R. V. Shamin
%A A. V. Yudin
%T Statistical characteristics of the anomalously large surface waves based on computational experiments
%J Matematičeskoe modelirovanie
%D 2016
%P 31-42
%V 28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_9_a2/
%G ru
%F MM_2016_28_9_a2
R. V. Shamin; A. V. Yudin. Statistical characteristics of the anomalously large surface waves based on computational experiments. Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 31-42. http://geodesic.mathdoc.fr/item/MM_2016_28_9_a2/

[1] C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean, Springer, 2009, 216 pp. | MR | Zbl

[2] I. Nikolkina, I. Didenkulova, “Rogue waves in 2006–2010”, Nat. Hazards Earth Syst. Sci., 11 (2011), 2913–2924 | DOI | MR

[3] K. L. Henderson, D. H. Peregrine, J. W. Dold, “Unstready water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrodinger equation”, Wave Motion, 29 (1999), 341–361 | DOI | MR | Zbl

[4] W. J. D. Baterman, C. Swan, P. H. Taylor, “On the efficient numerical simulation of directionally spread surface water waves”, J. Comput. Physics, 174 (2001), 277–305 | DOI | MR

[5] A. I. Dyachenko, V. E. Zakharov, “On the Formation of Freak Waves on the Surface of Deep Water”, JETP Letters, 88:5 (2008), 307–311 | DOI | MR

[6] V. E. Zakharov, A. I. Dyachenko, R. V. Shamin, “How probability for freak wave formation can be found”, The European Physical Journal, 185:1, special topics (2010), 113–124 | DOI

[7] D. Chalikov, “Freak waves: Their occurrence and probability”, Phys. Fluids, 21:7 (2009) | DOI | Zbl

[8] V. E. Zakharov, R. V. Shamin, “Probability of the occurrence of freak waves”, JETP Letters, 91:2 (2010), 63–65 | DOI

[9] V. E. Zakharov, R. V. Shamin, “Statistics of rogue waves in computer experiments”, JETP Letters, 96:1 (2012), 66–69 | DOI

[10] R. V. Shamin, V. E. Zakharov, A. V. Yudin, “Energy portrait of rogue waves”, JETP Letters, 99:9 (2010), 514–517

[11] V. E. Zakharov, R. V. Shamin, A. V. Yudin, “Typical geometry of rogue waves”, Doklady Earth Sciences, 462:1 (2015), 484–486 | DOI | DOI

[12] R. V. Shamin, A. V. Yudin, “Simulation of spatiotemporal spread of rogue waves”, Doklady Earth Sciences, 448:2 (2013), 240–242 | DOI | DOI | Zbl

[13] A. A. Kurkin, E. N. Pelinovskii, Volny-ubiitsy: fakty, teoriya i modelirovanie, Nizhegorodskii Gos. Tekh. Universitet, Nizhnii Novgorod, 2004, 158 pp.

[14] D. V. Chalikov, “Statistika ekstremalnykh vetrovykh voln”, Fund. i prikl. gidrofizika, 5:1 (2012), 5–13

[15] L. V. Ovsyannikov, “K obosnovaniyu teorii melkoi vody”, Sb. nauch. tr., Dinamika sploshnoi sredy, 15, Akad. nauk SSSR, sib. otd-nie, In-t gidrodinamiki, Novosibirsk, 1973, 104–125

[16] J. C. Whitney, “The numerical solution of unsteady free-surface flows by conformal mapping”, Proc. Second Inter. Conf. on Numer. Fluid Dynamics, ed. M. Holt, Springer-Verlag, 1971, 458–462 | DOI

[17] D. Chalikov, D. Sheinin, “Modeling of Extreme Waves Based on Equations of Potential Flow with a Free Surface”, Journ. Comp. Phys., 210 (2005), 247–273 | DOI | MR | Zbl

[18] A. I. Dyachenko, V. E. Zakharov, E. A. Kuznetsov, “Nelineinaya dinamika svobodnoi poverkhnosti idealnoi zhidkosti”, Fizika plazmy, 1999, no. 10, 916–928

[19] V. P. Ruban, “Water waves over a time-dependent bottom: Exact description for 2D potential flows”, Phys. Lett. A, 340:1–4 (2005), 194–200 | DOI | MR | Zbl

[20] V. E. Zakharov, A. I. Dyachenko, O. A. Vasilyev, “New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface”, Eur. J. Mech. B Fluids, 21 (2002), 283–291 | DOI | MR | Zbl

[21] R. V. Shamin, “Ob odnom chislennom metode v zadache o dvizhenii idealnoi zhidkosti so svobodnoi poverkhnostyu”, Sib. zhurn. vych. mat., 9:4 (2006), 325–340 | Zbl

[22] R. V. Shamin, “On the existence of smooth solutions to the Dyachenko equations governing free-surface unsteady ideal fluid flows”, Doklady Mathematics, 73:1 (2006), 112–113 | DOI | MR | Zbl

[23] R. V. Shamin, Vychislitelnye eksperimenty v modelirovanii poverkhnostnykh voln v okeane, Nauka, M., 2008, 113 pp.

[24] R. V. Shamin, “Estimate of the existence time for solutions to the surface wave equation”, Doklady Mathematics, 77:1 (2008), 118–119 | DOI | MR | Zbl

[25] R. V. Shamin, “Solvability of equations describing waves of minimum smoothness”, Doklady Mathematics, 81:3 (2010), 436–438 | DOI | MR | MR | Zbl

[26] A. I. Zaitsev, A. E. Malashenko, E. N. Pelinovskii, “Anomalno bolshie volny vblizi yuzhnogo poberezhya o. Sakhalin”, Fundamentalnaya i prikladnaya gidrofizika, 4:4 (2011), 35–42