Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_9_a0, author = {M. V. Shamolin}, title = {On the problem of free deceleration of a rigid body with the cone front part in a resisting medium}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--23}, publisher = {mathdoc}, volume = {28}, number = {9}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_9_a0/} }
TY - JOUR AU - M. V. Shamolin TI - On the problem of free deceleration of a rigid body with the cone front part in a resisting medium JO - Matematičeskoe modelirovanie PY - 2016 SP - 3 EP - 23 VL - 28 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_9_a0/ LA - ru ID - MM_2016_28_9_a0 ER -
M. V. Shamolin. On the problem of free deceleration of a rigid body with the cone front part in a resisting medium. Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 3-23. http://geodesic.mathdoc.fr/item/MM_2016_28_9_a0/
[1] M. V. Shamolin, Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Iz-vo “Ekzamen”, M., 2007, 352 pp.
[2] M. V. Shamolin, “Dynamical systems with variable dissipation: approaches, methods, and applications”, Journal of Mathematical Sciences, 162:6 (2009), 741–908 ; (1984), Наука, М., 560 с. | DOI | MR | Zbl | Zbl
[3] L. I. Sedov, Mekhanika sploshnoy sredy, v. 1, Nauka, M., 1983, 528 pp.; v. 2, Nauka, M., 1984, 560 pp.
[4] M. I. Gurevich, Teoriia strui idealnoi zhidkosti, Nauka, M., 1979, 322 pp.
[5] S. A. Chaplygin, Izbrannye trudy, Nauka, M., 1976, 495 pp.
[6] V. G. Tabachnikov, “Statsionarnye kharakteristiki kryl'ev na malykh skorostyakh vo vsem diapazone uglov ataki”, Trudy TSAGI, 1621 (1974), 18–24
[7] V. V. Sychev, A. I. Ruban, Vik. V. Sychev, G. L. Korolev, Asimptoticheskaya teoriya otryvnykh techeniy, Nauka, M., 1987, 256 pp.
[8] B. Ya. Lokshin, V. A. Privalov, V. A. Samsonov, Vvedenie v zadachu o dvizhenii tela v soprotivlyayuscheycya srede, MGU, M., 1986, 86 pp.
[9] S. A. Chaplygin, “O dvizhenii tiazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135
[10] L. Prandtl, A. Betz, Ergebnisse der Aerodinamischen Versuchsastalt zu Gottingen, Berlin, 1932, 148 pp.
[11] V. A. Eroshin, V. A. Samsonov, M. V. Shamolin, “A model problem of deceleration of a body in a resisting medium with a jet flow around the body”, Fluid Dynamics, 30:3 (1995), 351–355 | DOI | MR
[12] V. A. Samsonov, M. V. Shamolin, V. A. Eroshin, V. M. Makarshin, Matematicheskoe modelirovanie v zadache o tormozhenii tela v soprotivlyayuscheysya srede pri struynom obtekanii, Nauchn. otchet In-ta Mekhaniki MGU No 4396, M., 1995, 41 pp.
[13] G. S. Byushgens, R. B. Studnev, Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969, 349 pp.
[14] G. S. Byushgens, R. B. Studnev, Dinamika samoleta. Prostranstvennoe dvizheniye, Mashinostroenie, M., 1988, 320 pp.
[15] V. A. Eroshin, “Experimental investigation of an elastic cylinder entering water at high velocity”, Fluid Dynamics, 27:5 (1992), 617–625 | DOI | MR
[16] Yu. K. Bivin, V. V. Viktorov, L. P. Stepanov, “Issledovanie dvizheniya tverdogo tela v glinistoy srede”, Izv. AN SSSR, MTT, 1978, no. 2, 159–165
[17] V. V. Trofimiv, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, Journal of Mathematical Sciences, 180:4 (2012), 365–530 | DOI | MR
[18] D. Arrowsmith, C. Place, Ordinary Differential Equations. Ordinary Differential Equations. A Qualitative Approach. With Applications, Springer, London, 1983 | MR
[19] A. Puankare, O krivykh, opredeliaemykh differentsialnymi uravneniiami, OGIZ, M.–L., 1947
[20] E. Bendixon, “O krivykh, opredeliaemykh differentsialnymi uravneniiami”, UMN, 9 (1941), 191–211
[21] M. V. Shamolin, “Simulation of Rigid Body Motion in a Resisting Medium and Analogies with Vortex Streets”, Mathematical Models and Computer Simulations, 7:4 (2015), 389–400 ; 112 | DOI | MR
[22] M. V. Shamolin, “On the problem of the motion of a body in a resistant medium”, Moscow University Mechanics Bulletin, 47:1 (1992), 4–10 ; 113 | MR | Zbl
[23] M. V. Shamolin, “Application of the methods of topographic Poincare systems and comparison systems to some particular systems of differential equations”, Moscow University Mechanics Bulletin, 48:2 (1993), 10–15 | MR | Zbl