On the problem of free deceleration of a rigid body with the cone front part in a resisting medium
Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author constructs the nonlinear mathematical model of the planar interaction of a medium to the rigid body having the circular convex as the front part of its external shape. We make the multi-parametric analysis of dynamic equations of the body motion. We obtain new family of the phase patterns on the phase cylinder of quasi-velocities. This family consists of the infinite set of topologically nonequivalent phase patterns. We also obtain the sufficient conditions of important regime stability, i.e. the rectilinear translational deceleration, and also the conditions of existence of auto-oscillations in the system considered.
Keywords: rigid body, resisting medium, phase pattern.
@article{MM_2016_28_9_a0,
     author = {M. V. Shamolin},
     title = {On the problem of free deceleration of a rigid body with the cone front part in a resisting medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {28},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_9_a0/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - On the problem of free deceleration of a rigid body with the cone front part in a resisting medium
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 3
EP  - 23
VL  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_9_a0/
LA  - ru
ID  - MM_2016_28_9_a0
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T On the problem of free deceleration of a rigid body with the cone front part in a resisting medium
%J Matematičeskoe modelirovanie
%D 2016
%P 3-23
%V 28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_9_a0/
%G ru
%F MM_2016_28_9_a0
M. V. Shamolin. On the problem of free deceleration of a rigid body with the cone front part in a resisting medium. Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 3-23. http://geodesic.mathdoc.fr/item/MM_2016_28_9_a0/

[1] M. V. Shamolin, Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Iz-vo “Ekzamen”, M., 2007, 352 pp.

[2] M. V. Shamolin, “Dynamical systems with variable dissipation: approaches, methods, and applications”, Journal of Mathematical Sciences, 162:6 (2009), 741–908 ; (1984), Наука, М., 560 с. | DOI | MR | Zbl | Zbl

[3] L. I. Sedov, Mekhanika sploshnoy sredy, v. 1, Nauka, M., 1983, 528 pp.; v. 2, Nauka, M., 1984, 560 pp.

[4] M. I. Gurevich, Teoriia strui idealnoi zhidkosti, Nauka, M., 1979, 322 pp.

[5] S. A. Chaplygin, Izbrannye trudy, Nauka, M., 1976, 495 pp.

[6] V. G. Tabachnikov, “Statsionarnye kharakteristiki kryl'ev na malykh skorostyakh vo vsem diapazone uglov ataki”, Trudy TSAGI, 1621 (1974), 18–24

[7] V. V. Sychev, A. I. Ruban, Vik. V. Sychev, G. L. Korolev, Asimptoticheskaya teoriya otryvnykh techeniy, Nauka, M., 1987, 256 pp.

[8] B. Ya. Lokshin, V. A. Privalov, V. A. Samsonov, Vvedenie v zadachu o dvizhenii tela v soprotivlyayuscheycya srede, MGU, M., 1986, 86 pp.

[9] S. A. Chaplygin, “O dvizhenii tiazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[10] L. Prandtl, A. Betz, Ergebnisse der Aerodinamischen Versuchsastalt zu Gottingen, Berlin, 1932, 148 pp.

[11] V. A. Eroshin, V. A. Samsonov, M. V. Shamolin, “A model problem of deceleration of a body in a resisting medium with a jet flow around the body”, Fluid Dynamics, 30:3 (1995), 351–355 | DOI | MR

[12] V. A. Samsonov, M. V. Shamolin, V. A. Eroshin, V. M. Makarshin, Matematicheskoe modelirovanie v zadache o tormozhenii tela v soprotivlyayuscheysya srede pri struynom obtekanii, Nauchn. otchet In-ta Mekhaniki MGU No 4396, M., 1995, 41 pp.

[13] G. S. Byushgens, R. B. Studnev, Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969, 349 pp.

[14] G. S. Byushgens, R. B. Studnev, Dinamika samoleta. Prostranstvennoe dvizheniye, Mashinostroenie, M., 1988, 320 pp.

[15] V. A. Eroshin, “Experimental investigation of an elastic cylinder entering water at high velocity”, Fluid Dynamics, 27:5 (1992), 617–625 | DOI | MR

[16] Yu. K. Bivin, V. V. Viktorov, L. P. Stepanov, “Issledovanie dvizheniya tverdogo tela v glinistoy srede”, Izv. AN SSSR, MTT, 1978, no. 2, 159–165

[17] V. V. Trofimiv, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, Journal of Mathematical Sciences, 180:4 (2012), 365–530 | DOI | MR

[18] D. Arrowsmith, C. Place, Ordinary Differential Equations. Ordinary Differential Equations. A Qualitative Approach. With Applications, Springer, London, 1983 | MR

[19] A. Puankare, O krivykh, opredeliaemykh differentsialnymi uravneniiami, OGIZ, M.–L., 1947

[20] E. Bendixon, “O krivykh, opredeliaemykh differentsialnymi uravneniiami”, UMN, 9 (1941), 191–211

[21] M. V. Shamolin, “Simulation of Rigid Body Motion in a Resisting Medium and Analogies with Vortex Streets”, Mathematical Models and Computer Simulations, 7:4 (2015), 389–400 ; 112 | DOI | MR

[22] M. V. Shamolin, “On the problem of the motion of a body in a resistant medium”, Moscow University Mechanics Bulletin, 47:1 (1992), 4–10 ; 113 | MR | Zbl

[23] M. V. Shamolin, “Application of the methods of topographic Poincare systems and comparison systems to some particular systems of differential equations”, Moscow University Mechanics Bulletin, 48:2 (1993), 10–15 | MR | Zbl