The refined model of flexural deformation of longitudinally reinforced metal-composite wall-beams under conditions of steady-state creep
Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 127-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations were obtained to describe, with varying degrees of accuracy, flexural behavior of longitudinally reinforced metal composite deep beams under conditions of steady-state creep of materials all phases of the composition. From these equations, as particular cases, the equations of the classical Bernoulli theory and two variants of the Timoshenko theory were obtained. For statically determinate beams the simplified version of the refined theory was developed. On examples of studies of flexural deformation of hinge supported wall-beams, it was demonstrated that there are such metal-composites, where neither classical, nor both Timoshenko theory does not guarantee reliable results of slenderness even within 20% accuracy, which is considered acceptable when studying the mechanical behavior of structures under creep conditions. To perform accurate calculations require the use of sophisticated theories that allow the calculation of edge effects in phase materials in the vicinity of the supported sections.
Mots-clés : metal composites
Keywords: reinforcement, wall-beams, steady-state creep, Timoshenko theory, Bernoulli theory, refined theory of bending.
@article{MM_2016_28_8_a8,
     author = {A. P. Yankovskii},
     title = {The refined model of flexural deformation of longitudinally reinforced metal-composite wall-beams under conditions of steady-state creep},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {127--144},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_8_a8/}
}
TY  - JOUR
AU  - A. P. Yankovskii
TI  - The refined model of flexural deformation of longitudinally reinforced metal-composite wall-beams under conditions of steady-state creep
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 127
EP  - 144
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_8_a8/
LA  - ru
ID  - MM_2016_28_8_a8
ER  - 
%0 Journal Article
%A A. P. Yankovskii
%T The refined model of flexural deformation of longitudinally reinforced metal-composite wall-beams under conditions of steady-state creep
%J Matematičeskoe modelirovanie
%D 2016
%P 127-144
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_8_a8/
%G ru
%F MM_2016_28_8_a8
A. P. Yankovskii. The refined model of flexural deformation of longitudinally reinforced metal-composite wall-beams under conditions of steady-state creep. Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 127-144. http://geodesic.mathdoc.fr/item/MM_2016_28_8_a8/

[1] G. M. Khazhinskii, Modeli deformirovaniia i razrusheniia metallov, Nauchny mir, M., 2011, 231 pp.

[2] L. M. Kachanov, Teoriia polzushchesti, Fismathgiz, M., 1960, 456 pp.

[3] Yu. N. Rabotnov, Polzuchest elementov konstruktsiy, Nauka, M., 1966, 752 pp.

[4] O. V. Sosnin, B. V. Gorev, A. F. Nikitenko, Energeticheskiy variant teorii polzuchesti, IGiL SO AN SSSR, Novosibirsk, 1986, 96 pp.

[5] V. V. Karpov, Prochnost i ustoichivost podkreplennykh obolochek vrashcheniia, V 2-kh ch., v. 1, Modeli i algoritmy issledovaniia prochnosti i ustoichivosti podkreplennykh obolochek vrashcheniia, Fizmatlit, M., 2010, 288 pp.

[6] A. P. Yankovskii, “Steady-State Creep of Complexly Reinforced Shallow Metal-Composite Shells”, Mechanics of Composite Materials, 46:1 (2010), 89–100 | DOI | MR

[7] Yu. V. Nemirovskii, “Creep of clamped plates with different reinforcement structures”, Journal of Applied Mechanics and Technical Physics, 55:1 (2014), 147–153 | DOI | MR | Zbl

[8] A. V. Mishchenko, Yu. V. Nemirovskii, “Polzuchest odnorodnykh i sloistykh ram na osnove trekhkomponentnoi modeli”, Izvestiia vuzov. Stroitelstvo, 2009, no. 5, 16–24 | MR

[9] A. P. Yankovskii, “Issledovanie ustanovivsheisia polzuchesti armirovannykh metallocompozitnykh balok-stenok s uchetom oslablennogo soprotivleniia poperechnomu sdvigu”, Mekhanika kompozicionnykh materialov i konstrukcij, 18:3 (2012), 301–319

[10] A. P. Yankovskii, “Steady-State Creep of Bent Reinforced Metal-Composite Plates with Consideration of Their Reduced Resistance to Transverse Shear. 2. Analysis of Calculated Results”, Journal of Applied Mechanics and Technical Physics, 55:4 (2014), 701–708 | DOI

[11] A. P. Yankovskii, “Modelirovanie mekhanicheskogo povedeniia perekrestno armirovannykh metallocompositov v usloviiakh ustanovivsheisia polzuchesti”, Mekhanika kompozicionnykh materialov i konstrukcij, 17:3 (2011), 362–384

[12] G. S. Pisarenko, N. S. Mozharovskii, Uravneniia i kraevye zadachi teorii plastichnosti i polzuchesti, Spravochnoe posobie, Naukova dumka, Kiev, 1981, 496 pp.

[13] D. M. Karpinos (ed.), Kompozitsionnye materialy, Spravochnik, Naukova dumka, Kiev, 1985, 592 pp.

[14] A. F. Nikitenko, Polzuchest i dlitelnaia prochnost metallicheskikh materialov, NSUCE Publ., Novosibirsk, 1997, 278 pp.

[15] Yu. V. Nemirovskii, A. P. Yankovskii, “O granicakh primenimosti nekotorykh teotii rascheta izgibaemykh armirovannykh plastin”, Nauchnyi vestnik NGTU Publ., 2004, no. 3(18), 91–113

[16] N. I. Bezukhov, V. L. Bazhanov, I. I. Goldenblat, N. A. Nikolaenko, A. M. Siniukov, Raschety na prochnost, ustoichivost i kolebaniia v usloviakh vysokikh temperatur, ed. I. I. Goldenblat, Mashinostroenie Publ., M., 1965, 567 pp.