Electromagnetic wave in the medium with dispersion of dielectric permittivity
Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 97-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The technique for numerical modelling electromagnetic wave propagation in materials, which dielectric permittivity depends on frequency, is represented. The technique is based on numerical solution of Maxwell equations with additional integral component in displacement current density. The technique for displacement current density calculation in dispersive medium is represented, the corresponding modification of earlier developed finite-difference scheme for Maxwell equations is carried out. The calculation of electromagnetic pulse propagation in the solidpropellant power system is executed.
Keywords: electromagnetic field, Maxwell equations, dielectric permittivity, finitedifference scheme, solid-propellant.
Mots-clés : dispersion
@article{MM_2016_28_8_a6,
     author = {I. B. Bakholdin and A. V. Berezin and A. A. Kryukov and M. B. Markov and B. D. Plyushchenkov and D. N. Sadovnichii},
     title = {Electromagnetic wave in the medium with dispersion of dielectric permittivity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_8_a6/}
}
TY  - JOUR
AU  - I. B. Bakholdin
AU  - A. V. Berezin
AU  - A. A. Kryukov
AU  - M. B. Markov
AU  - B. D. Plyushchenkov
AU  - D. N. Sadovnichii
TI  - Electromagnetic wave in the medium with dispersion of dielectric permittivity
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 97
EP  - 111
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_8_a6/
LA  - ru
ID  - MM_2016_28_8_a6
ER  - 
%0 Journal Article
%A I. B. Bakholdin
%A A. V. Berezin
%A A. A. Kryukov
%A M. B. Markov
%A B. D. Plyushchenkov
%A D. N. Sadovnichii
%T Electromagnetic wave in the medium with dispersion of dielectric permittivity
%J Matematičeskoe modelirovanie
%D 2016
%P 97-111
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_8_a6/
%G ru
%F MM_2016_28_8_a6
I. B. Bakholdin; A. V. Berezin; A. A. Kryukov; M. B. Markov; B. D. Plyushchenkov; D. N. Sadovnichii. Electromagnetic wave in the medium with dispersion of dielectric permittivity. Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 97-111. http://geodesic.mathdoc.fr/item/MM_2016_28_8_a6/

[1] V. P. Makarov, A. A. Rukhadze, “Negative group velocity electromagnetic waves and energy momentum tensor”, Physics-Uspekhi (Advances in Physical Sciences), 54:12 (2011), 1285–1296 | DOI | DOI

[2] P. Hillion, “Electromagnetic pulse propagation in dispersive media”, Progress in electromagnetic research, 35 (2002), 299–314 | DOI

[3] B. I. Sazhin (ed.), Dielektricheskie svoistva polimerov, Khimiia, L., 1986

[4] F. Kremer, A. Schonhals (eds.), Broadband dielectric spectroscopy, Springer-Verlag, Berlin–Heidelberg–New York, 2003

[5] Energeticheskie kondensirovannye sistemy. Kratkii entsiklopedicheskii slovar, Ianus-K, M., 1999

[6] R. Fisher, F. W. Smith, K. S. Cho, “EMP coupling to canonical models consisting of dielectric and meal sections with emphasis toward simple missile models”, IEEE Transaction on nuclear science, NS-28:6 (1981), 4490–4494 | DOI

[7] D. N. Sadovnichii, Yu. M. Milekhin, S. A. Lopatkin, V. F. Vazhov, S. A. Gusev, E. A. Butenko, “Pulsed electrical breakdown of energetic composite condensed systems”, Combustion, Explosion, and Shock Waves, 46:4 (2010), 464–471 | DOI | MR

[8] A. V. Berezin, A. S. Vorotsov, M. B. Markov, D. N. Sadovnichii, “Model difraktsii elektromagnitnogo impulsa”, Matematicheskoe modelirovanie, 26:5 (2014), 33–47 | MR

[9] D. N. Sadovnichi, M. B. Markov, A. S. Vorontsov, Yu. M. Milekhin, “Diffraction of electromagnetic pulse at a finite length dielectric gradient cylinder”, Technical Physics, 57:9 (2012), 1236–1244 | DOI

[10] D. N. Sadovnichi, M. B. Markov, A. S. Vorontsov, Yu. M. Milekhin, “Specific features of propagation of an electromagnetic pulse in a solid-propellant energetic system”, Combustion, Explosion, and Shock Waves, 48:1 (2012), 100–105 | DOI

[11] A. V. Berezin, A. S. Vorontsov, M. B. Markov, B. D. Pliushchenkov, “O vyvode I reshenii uravnenii Maksvella v zadachah s zadannym volnovym frontom”, Matematicheskoe modelirovanie, 23:4 (2006), 43–60

[12] A. V. Berezin, A. A. Kriukov, B. D. Pliushchenkov, “Metod vychisleniia elektromagnitnogo polia s zadannym volnovym frontom”, Matematicheskoe modelirovanie, 23:3 (2011), 109–126 | MR | Zbl

[13] L. D. Landau, L. P. Pitaevskii, E. M. Lifshitz, Electrodynamics of continious media, Second edition, Elsivier, Amsterdam–Boston–Heidelberg–London–New-York–Oxford–Paris–San Diego–San Francisco–Singapore–Sydney–Tokio, 2004, 460 pp.

[14] B. D. Plyushchenkov, V. I. Turchaninov, “Optimum approximation of convolution of arbitrary grid function with the power kernel”, Poromechanics II, Reports of the 2nd Biot conference on Poromechanics (Grenoble, France, August 26–28, 2002), eds. Auriault C. et al., Swets Zeitlinger, Lisse, 2002, 753–756

[15] B. D. Pliushchenkov, V. I. Turchaninov, “Poshagovaia svertka”, Keldysh Institute preprints, 2009, 024, 24 pp.

[16] I. G. Gurtovik, V. I. Sokolov, N. N. Trofimov, S. I. Shalgunov, Radioprozrachnye izdeliia iz stekloplastikov, Mir, M., 2002, 368 pp.

[17] J. C. Dean, G. M. Williams, “Evaluation of propellant hazards using high frequency electrical property measurements”, Workshop on ESD ignition of composite solid propellants, Vanderbilt University, Nashville, USA, 1989, 71–82

[18] R. W. Reuter, R. A. Church, “Ballistic missile electrostatic control program”, Workshop on ESD ignition of composite solid propellants, Vanderbilt University, Nashville, USA, 1989, 25–44

[19] V. M. Agranovich, V. L. Ginsburg, Cristal optics with spatial dispersion, and exitons, Springer-Verlag, Berlin–Heidelberg–New York, 1984, 442 pp. | MR