Numerical solution of nonlinear least squares problems arising in the simulating of environment pollutants
Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 82-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of nonlinear least squares problems, which occurs in the study of pollutants by X-ray spectroscopy is considered. Although the solution of this problem is possible by general minimization methods, it is appropriate to take into account the specifics of the problem and to use special methods. Moreover, this problem has a system of linear equality constraints, which makes it impossible to use unconstrained optimization methods. The formulation of most problems with constraints gives rise to saddle point systems. Such systems have got semidefinite (1,1) blocks. An augmented Lagrangian method has been used for improving conditionality of the (1,1) block. Our attention has been focused on the symmetric/skew-symmetric splitting preconditioner. Numerical results are given for the problems with small and large number of unknown parameters.
Keywords: nonlinear least squares problem, iteration methods, saddle-point linear equation system, symmetric/skew-symmetric preconditioning.
@article{MM_2016_28_8_a5,
     author = {T. S. Martynova and L. A. Krukier},
     title = {Numerical solution of nonlinear least squares problems arising in the simulating of environment pollutants},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {82--96},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_8_a5/}
}
TY  - JOUR
AU  - T. S. Martynova
AU  - L. A. Krukier
TI  - Numerical solution of nonlinear least squares problems arising in the simulating of environment pollutants
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 82
EP  - 96
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_8_a5/
LA  - ru
ID  - MM_2016_28_8_a5
ER  - 
%0 Journal Article
%A T. S. Martynova
%A L. A. Krukier
%T Numerical solution of nonlinear least squares problems arising in the simulating of environment pollutants
%J Matematičeskoe modelirovanie
%D 2016
%P 82-96
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_8_a5/
%G ru
%F MM_2016_28_8_a5
T. S. Martynova; L. A. Krukier. Numerical solution of nonlinear least squares problems arising in the simulating of environment pollutants. Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 82-96. http://geodesic.mathdoc.fr/item/MM_2016_28_8_a5/

[1] M. A. Blokhin, Metody rentgenospektralnykh issledovamii, Fizmatgiz, M., 1959, 366 pp.

[2] A. G. Urzhumtsev, “Matematicheskie metody rentgenostrukturnogo analiza makromolekul”, Chebyshevskii sbornik, 5:2 (2004), 149–166

[3] J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and nonlinear equations, Prentice-Hall, N.J., 1983, 395 pp. | MR | MR | Zbl

[4] J. Nocedal, S. J. Wright, Numerical optimization, Series in Operations Research, Springer-Verlag, New York, 1999, 634 pp. | MR | Zbl

[5] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, 1982, 395 pp. | MR | MR | Zbl

[6] Z.-Z. Bai, G. H. Golub, J.-Y. Pan, “Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems”, Numer. Math., 98 (2004), 1–32 | DOI | MR | Zbl

[7] G. H. Golub, C. Greif, “On solving block-structured indefinite linear systems”, SIAM Journal on Scientific Computing, 24:6 (2003), 2076–2092 | DOI | MR | Zbl

[8] T. S. Martynova, “On Augmented Lagrangian Methods for Saddle-Point Linear Systems with Singular or Semidefinite (1, 1) Blocks”, Journal of Computational Mathematics, 32:3 (2014), 297–305 | DOI | MR | Zbl

[9] M. Benzi, G. Golub, J. Liesen, “Numerical solution of saddle point problems”, Acta Numerica, 14 (2005), 1–137 | DOI | MR | Zbl

[10] M. Benzi, G. H. Golub, “A preconditioner for generalized saddle point problems”, SIAM J. Matrix Anal. Appl., 26 (2004), 20–41 | DOI | MR | Zbl

[11] V. V. Voevodin, Iu. A. Kuznetsov, Matricy i vychisleniia, Nauka, M., 1984, 320 pp. | MR

[12] L. A. Krukier, B. L. Krukier, Z.-R. Ren, “Generalized skew-hermitian triangular splitting iteration methods for saddle-point linear systems”, Numer. Linear Algebra Appl., 21 (2014), 152–170 | DOI | MR | Zbl

[13] L. A. Krukier, T. S. Martynova, “Efficient Iterative Method for Saddle Point Problems”, Mathematical Models and Computer Simulations, 7:4 (2015), 331–338 | DOI | MR

[14] M. A. Botchev, L. A. Krukier, “Iterative solution of strongly nonsymmetric systems of linear algebraic equations”, Comp. Math. And Math. Physics, 37:11 (1997), 1241–1251 | MR | Zbl

[15] Z.-Z. Bai, L. A. Krukier, T. S. Martinova, “Two-step iterative methods for solving the stationary convection-diffusion equations with a small parameter at the highest derivative on a uniform grid”, Comp. Math. and Math. Physics, 46:2 (2006), 282–293 | DOI | MR | Zbl

[16] L. A. Krukier, T. S. Martinova, Z.-Z. Bai, “Product-Type Skew-Hermitian Triangular Splitting Iteration Methods for Strongly Non-Hermitian Positive Definite Linear Systems”, Journal of Computational and Applied Mathematics, 232:1 (2009), 3–16 | DOI | MR | Zbl

[17] E. F. Plechaty, D. E. Cullen, R. J. Howerton, Tables and Graphs of Photon Interaction Cross Sections from 0.1 keV to 100 MeV Derived from the LLL Evaluated Nuclear Data Library. v. 6, Report UCRL-50400, NTIS DE82-004819, Lawrence Livermore National Laboratory, Livermore, CA, 1981