Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_8_a5, author = {T. S. Martynova and L. A. Krukier}, title = {Numerical solution of nonlinear least squares problems arising in the simulating of environment pollutants}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {82--96}, publisher = {mathdoc}, volume = {28}, number = {8}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_8_a5/} }
TY - JOUR AU - T. S. Martynova AU - L. A. Krukier TI - Numerical solution of nonlinear least squares problems arising in the simulating of environment pollutants JO - Matematičeskoe modelirovanie PY - 2016 SP - 82 EP - 96 VL - 28 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_8_a5/ LA - ru ID - MM_2016_28_8_a5 ER -
%0 Journal Article %A T. S. Martynova %A L. A. Krukier %T Numerical solution of nonlinear least squares problems arising in the simulating of environment pollutants %J Matematičeskoe modelirovanie %D 2016 %P 82-96 %V 28 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_8_a5/ %G ru %F MM_2016_28_8_a5
T. S. Martynova; L. A. Krukier. Numerical solution of nonlinear least squares problems arising in the simulating of environment pollutants. Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 82-96. http://geodesic.mathdoc.fr/item/MM_2016_28_8_a5/
[1] M. A. Blokhin, Metody rentgenospektralnykh issledovamii, Fizmatgiz, M., 1959, 366 pp.
[2] A. G. Urzhumtsev, “Matematicheskie metody rentgenostrukturnogo analiza makromolekul”, Chebyshevskii sbornik, 5:2 (2004), 149–166
[3] J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and nonlinear equations, Prentice-Hall, N.J., 1983, 395 pp. | MR | MR | Zbl
[4] J. Nocedal, S. J. Wright, Numerical optimization, Series in Operations Research, Springer-Verlag, New York, 1999, 634 pp. | MR | Zbl
[5] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, 1982, 395 pp. | MR | MR | Zbl
[6] Z.-Z. Bai, G. H. Golub, J.-Y. Pan, “Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems”, Numer. Math., 98 (2004), 1–32 | DOI | MR | Zbl
[7] G. H. Golub, C. Greif, “On solving block-structured indefinite linear systems”, SIAM Journal on Scientific Computing, 24:6 (2003), 2076–2092 | DOI | MR | Zbl
[8] T. S. Martynova, “On Augmented Lagrangian Methods for Saddle-Point Linear Systems with Singular or Semidefinite (1, 1) Blocks”, Journal of Computational Mathematics, 32:3 (2014), 297–305 | DOI | MR | Zbl
[9] M. Benzi, G. Golub, J. Liesen, “Numerical solution of saddle point problems”, Acta Numerica, 14 (2005), 1–137 | DOI | MR | Zbl
[10] M. Benzi, G. H. Golub, “A preconditioner for generalized saddle point problems”, SIAM J. Matrix Anal. Appl., 26 (2004), 20–41 | DOI | MR | Zbl
[11] V. V. Voevodin, Iu. A. Kuznetsov, Matricy i vychisleniia, Nauka, M., 1984, 320 pp. | MR
[12] L. A. Krukier, B. L. Krukier, Z.-R. Ren, “Generalized skew-hermitian triangular splitting iteration methods for saddle-point linear systems”, Numer. Linear Algebra Appl., 21 (2014), 152–170 | DOI | MR | Zbl
[13] L. A. Krukier, T. S. Martynova, “Efficient Iterative Method for Saddle Point Problems”, Mathematical Models and Computer Simulations, 7:4 (2015), 331–338 | DOI | MR
[14] M. A. Botchev, L. A. Krukier, “Iterative solution of strongly nonsymmetric systems of linear algebraic equations”, Comp. Math. And Math. Physics, 37:11 (1997), 1241–1251 | MR | Zbl
[15] Z.-Z. Bai, L. A. Krukier, T. S. Martinova, “Two-step iterative methods for solving the stationary convection-diffusion equations with a small parameter at the highest derivative on a uniform grid”, Comp. Math. and Math. Physics, 46:2 (2006), 282–293 | DOI | MR | Zbl
[16] L. A. Krukier, T. S. Martinova, Z.-Z. Bai, “Product-Type Skew-Hermitian Triangular Splitting Iteration Methods for Strongly Non-Hermitian Positive Definite Linear Systems”, Journal of Computational and Applied Mathematics, 232:1 (2009), 3–16 | DOI | MR | Zbl
[17] E. F. Plechaty, D. E. Cullen, R. J. Howerton, Tables and Graphs of Photon Interaction Cross Sections from 0.1 keV to 100 MeV Derived from the LLL Evaluated Nuclear Data Library. v. 6, Report UCRL-50400, NTIS DE82-004819, Lawrence Livermore National Laboratory, Livermore, CA, 1981