Application of the quasi one-dimensional reconstruction scheme to sliding meshes
Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 13-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the extension of conservative cell-centered conservative scheme based on the quasi one-dimensional reconstruction of variables (BBR scheme) for solving Euler equations on 3D unstructured meshes with sliding interfaces. Fluxes calculation using BBR scheme imply large quantity of computations depenging on mesh geometry but not the solution. Considering static mesh we can proceed with them before the begin of computations. The situation changes if we consider sliding meshes where we need to recalculate the coefficients at each timestep. In this paper we introduce a modification of BBR scheme near sliding interface which reduces computational cost due to use of additional precomputed information. This modification is applicable for both linear scheme and scheme with limiter. On test problems we show that if we use the presented scheme implementation the presence of sliding interfaces does not significantly affect the accuracy of computations.
Keywords: high-accuracy schemes, unstructured meshes, sliding meshes.
@article{MM_2016_28_8_a1,
     author = {P. A. Bakhvalov and V. G. Bobkov and T. K. Kozubskaya},
     title = {Application of the quasi one-dimensional reconstruction scheme to sliding meshes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {13--32},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_8_a1/}
}
TY  - JOUR
AU  - P. A. Bakhvalov
AU  - V. G. Bobkov
AU  - T. K. Kozubskaya
TI  - Application of the quasi one-dimensional reconstruction scheme to sliding meshes
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 13
EP  - 32
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_8_a1/
LA  - ru
ID  - MM_2016_28_8_a1
ER  - 
%0 Journal Article
%A P. A. Bakhvalov
%A V. G. Bobkov
%A T. K. Kozubskaya
%T Application of the quasi one-dimensional reconstruction scheme to sliding meshes
%J Matematičeskoe modelirovanie
%D 2016
%P 13-32
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_8_a1/
%G ru
%F MM_2016_28_8_a1
P. A. Bakhvalov; V. G. Bobkov; T. K. Kozubskaya. Application of the quasi one-dimensional reconstruction scheme to sliding meshes. Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 13-32. http://geodesic.mathdoc.fr/item/MM_2016_28_8_a1/

[1] T. Renaud, C. Benoit, J.-C. Boniface, P. Gardarein, “Navier–Stokes computations of a complete helicopter configuration accounting for main and tail rotor effects”, Twenty-ninth European Rotorcraft Forum (Friedrichshafen, Germany, September 2003)

[2] M. Potsdam, W. Yeo, W. Johnson, “Rotor airloads prediction using loose aerodynamic/structural coupling”, American Helicopter Society 60th Annual Forum (Baltimore, MD, 7–10 June 2004)

[3] R. Steijl, G. Barakos, “Sliding mesh algorithm for CFDanalysis of helicopter rotor-fuselage aerodynamics”, Int. J. Numer. Meth. Fluids, 58 (2008), 527–549 | DOI | Zbl

[4] H. Xu, S. Zhang, N. Ball, A. Gubbels, “Investigations of Aerodynamic Performance of Bell 412 Helicopter in Real-Time Hover Flight Conditions”, Proceedings of 33rd European Rotorcraft Forum, ERF33 (2007), v. 1

[5] R. Mittal, G. Iaccarino, “Immersed Boundary Methods”, Annual Review of Fluid Mechanics, 37 (2005), 239–261 | DOI | MR | Zbl

[6] C. S. Peskin, Flow patterns around heart valves: a digital computer method for solving the equation of motions, Ph. D thesis. Physiol., Albert Einstein Coll. Med., Univ. Microfilms, 1972 | MR

[7] R. Steijl, G. N. Barakos, K. Badcock, “A framework for CFD analysis of helicopter rotors in hover and forward flight”, Int. J. Numer. Meth. Fluids, 51:8 (2006), 819–847 | DOI | Zbl

[8] B. Cockburn, C.-W. Shu, S. Hou, “The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: The multidimensional case”, Mathemathics of Computations, 54 (1990), 545–581 | MR | Zbl

[9] E. Ferrer, A high order Discontinuous Galerkin–Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes for simulating cross-flow turbines, A thesis submitted for the degree of Doctor of Philosophy, Trinity Term, 2012 | MR

[10] T. J. Barth, P. O. Frederickson, High order solution of the Euler equations on unstructured grids using quadratic reconstruction, AIAA Paper No 90-0013, 1990

[11] P.-H. Cournede, C. Debiez, A. Dervieux, A positive muscl scheme for triangulations, INRIA Report, Rep. No 3465, 1998

[12] C. Debiez, A. Dervieux, K. Mer, B. N. Konga, “Computation of unsteady flows with mixed finite volume/finite element upwind methods”, International journal for numerical method in fluids, 27 (1998), 193–206 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[13] C. Debiez, A. Dervieux, “Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteady flow calculations”, Computers and Fluids, 29:1, p.89–118 (2000) | DOI | MR | Zbl

[14] I. V. Abalakin, T. K. Kozubskaya, “Skhema povyshennoi tochnosti na osnove reberno-orientirovannoi kvaziodnomernoi rekonstruktsii peremennih dlia resheniia zadach aerodinamiki i aeroakustiki na tetraedralnih setkax”, Matematicheskoe modelirovanie, 25:8 (2013), 109–136 | MR

[15] B. Koobus, F. Alauzet, A. Dervieux, “Numerical algorithms for unstructured meshes”, Computational Fluid Dynamics, ed. F. Magoules, CRC Press, 2011, 131–203 | DOI | Zbl

[16] P. A. Bakhvalov, “Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems”, Mathem. Models and Comput. Simulat., 6:2 (2014), 192–202 | DOI | MR

[17] P. A. Bakhvalov, T. K. Kozubskaya, “Ekonomichnaya formulirovka shem s kvazindnomernoi rekonstuktsiei peremennih”, Keldysh Institute preprints, 2013, 089, 16 pp.

[18] P. A. Bakhvalov, T. K. Kozubskaia, “Skhema s kvaziodnomernoi rekonstruktsiei peremennykh, opredelennykh v tsentrakh elementov trekhmernoi nestrukturirovannoi setki”, Matematicheskoe modelirovanie, 28:3 (2016), 79–95

[19] C. Le Touse, A. Murrone, H. Guillard, “Multislope MUSCL method for general unstructured meshes”, Journal of Computational Physics, 284 (2015), 389–418 | DOI | MR

[20] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-Based Reconstruction Scheme and its WENO Implementation for Solving Aerodynamics and Aeroacoustics Problems on Unstructured Tetrahedral Meshes”, Computational Experiment in AeroAcoustics, Book of Abstracts of International Workshop (Svetlogorsk, Kaliningrad region, Russia, September 19–22, 2012), MAKS Press, M., 2012, 22–23

[21] A. Danilov, Y. Vassilevski, “A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes”, Russ. J. Numer. Anal. Math. Modelling, 24:3 (2009), 207–227 | DOI | MR | Zbl

[22] A. I. Zhmakin, A. A. Fursenko, “On a monotonic shock-capturing difference scheme”, Comp. Math. Math. Phys., 20:4, 218–227 | DOI | MR