Thirteen-moments model kinetic equation and its parameters
Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalized model kinetic equation representing a hybrid of Shakhov equation and ellipsoidal statistical Holway equation is offered. This is so-called thirteen-moments equation. Equation constants at first are expressed through transport coefficients — viscosity of gas, its heat conductivity and self-diffusion coefficient. Then transport coefficients are expressed through integral brackets, and for model molecules — hard spheres are finished to number in the first and the second approximations.
Mots-clés : Shakhov, equation constants
Keywords: Holway, ellipsoidal statistical equation (ES-equation), rarefied gas, gas macroparameters.
@article{MM_2016_28_8_a0,
     author = {A. V. Latyshev and A. A. Yushkanov},
     title = {Thirteen-moments model kinetic equation and its parameters},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {28},
     number = {8},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_8_a0/}
}
TY  - JOUR
AU  - A. V. Latyshev
AU  - A. A. Yushkanov
TI  - Thirteen-moments model kinetic equation and its parameters
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 3
EP  - 12
VL  - 28
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_8_a0/
LA  - ru
ID  - MM_2016_28_8_a0
ER  - 
%0 Journal Article
%A A. V. Latyshev
%A A. A. Yushkanov
%T Thirteen-moments model kinetic equation and its parameters
%J Matematičeskoe modelirovanie
%D 2016
%P 3-12
%V 28
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_8_a0/
%G ru
%F MM_2016_28_8_a0
A. V. Latyshev; A. A. Yushkanov. Thirteen-moments model kinetic equation and its parameters. Matematičeskoe modelirovanie, Tome 28 (2016) no. 8, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_2016_28_8_a0/

[1] E. M. Shakhov, Metod issledovaniia dvizhenii razrezhennogo gaza, Nauka, M., 1974, 207 pp.

[2] L. H. Holway, Approximation procedure for kinetic theory, Ph. D. Diss., Harvard University, 1963

[3] L. H. Holway, “New statistical models for kinetic theory: Methods of construction”, Phys. Fluids, 9:9 (1966), 1658–1673 | DOI

[4] A. V. Latyshev, A. A. Yushkanov, “Analytic aspects of solution of model kinetic equations”, Teoret. Mat. Fiz., 85:3 (1990), 428–442 | MR

[5] A. V. Latyshev, I. M. Spitkovski, M. N. Gajdukov, “Analytical solution of the model Boltzmann equation with the collision operator of compound type”, Operator Theory: Advances and Applications, 51 (1991), 189–199 | DOI | MR | Zbl

[6] A. V. Latyshev, “Analytical solution of the Boltzmann equation with a collision operator of the mixed type”, Comp. Math. Math. Phys., 31:3 (1991), 73–82 | MR | Zbl

[7] A. V. Latyshev, “Analytic solution of the ellipsoidal-statistical model Boltzmann equation”, Fluid Dynamics, 27:2 (1992), 267–277 | DOI | MR | Zbl

[8] C. Cercignani, “Solution of the Boltzmann equation”, Nonequilibrium phenomena I: The Boltzmann equation, North Holland, Amsterdam, 1983, 254 pp. | MR | Zbl

[9] A. V. Bobylev, “Tochnye i priblizhennye metody v teorii nelineinykh kineticheskikh uravnenii Boltsmana i Landau”, Keldysh Institute preprints, 1987, 253 pp.

[10] A. V. Latyshev, A. A. Yushkanov, “Zadacha Smolukhovskogo dlia molekuliarnykh gasov s peremennoi chastotoi stolknovenii s uchetom akkomodatsii postupatelnoi i vrashchtelnoi energii”, Matem. modelirovanie, 20:11 (2008), 115–128 | MR | Zbl

[11] O. I. Dodulad, Iu. Iu. Kloss, F. G. Cheremisin, P. V. Shuvalov, “Modelirovanie rasprostraneniia udarnoi volny v mikrokanale na osnove resheniia uravneniia Bolzmana”, Matem. modelirovanie, 22:6 (2010), 99–110 | Zbl

[12] V. V. Vedeniapin, Kineticheskie uravneniia Boltsmana i Vlasova, Fizmatlit, M., 2001, 111 pp.

[13] V. A. Titarev, Chislennye resheniia nekotorykh zadach dlia modelnogo kineticheskogo uravneniia Boltsmana, Avtoreferat dissertatsii: kand. fiz.-mat. nauk, MGTU im. N. E. Baumana, 2003

[14] G. A. Liu, “A method for constructing a model form for the Boltzmann equation”, Physics of Fluids A, 2:2 (1990), 277–280 | DOI | Zbl

[15] V. Garzo, M. de Haro Lopez, “Kinetic model for heat and momentum transport”, Phys. Fluids, 6 (1994), 3787–3794 | DOI | Zbl

[16] A. Santos, J. J. Brey, V. Garzo, “A kinetic model for steady heat flow”, Phys. Fluids, 11 (1999), 893–904 | DOI | Zbl

[17] R. D. M. Garcia, C. E. Siewert, “Viscous-slip, thermal-slip, and temperature-jump coefficients based on the linearized Boltzmann equation (and five linetic models) with the Cercignani-Lampis boundary conditions”, Euro. J. Mech. B, 29 (2010), 181–191 | DOI | Zbl

[18] A. V. Latyshev, A. A. Iushkanov, Kineticheskie uravneniia tipa Viliamsa i ikh tochnye resheniia, Mosk. gos. obl. un-t, M., 2004, 271 pp.

[19] S. E. Siewert, F. Sharipov, “Model equations in rarefied gas dynamics: Viscous-slip and thermal-slip coefficients”, Phys. Fluids, 14:12 (2002), 4123–4129 | DOI | MR

[20] J. H. Ferziger, H. G. Kaper, Mathematical theory of transport processes in gases, North-Holland, Amsterdam, 1972, 568 pp.