Exponential difference schemes for solution of boundary problems for diffusion-convection equations
Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 121-136

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical solution of boundary-value problems is considered for multidimensional equations of convection-diffusion (CDE). These equations are used for many physical processes in solids, liquids and gases. A new approach to the spatial approximation for such equations is proposed. This approach is based on a integral transformation of second order differential operators. A linear version of CDE was selected to simplify analysis. For this variant, a new exponential difference schemes were offered, algorithms of its implementation were developed, a brief analysis of the stability and convergence was fulfilled. Numerical testing of approach was executed for a two-dimensional problem of metallic particles motion in the water flow under influence of a constant magnetic field.
Mots-clés : Convection-Diffusion Equation (CDE)
Keywords: Integral Transformation, Finite-Difference Schemes, Iterations, Non-monotonic sweep procedure.
@article{MM_2016_28_7_a9,
     author = {S. V. Polyakov and Yu. N. Karamzin and T. A. Kudryashova and I. V. Tsybulin},
     title = {Exponential difference schemes for solution of boundary problems for diffusion-convection equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {121--136},
     publisher = {mathdoc},
     volume = {28},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_7_a9/}
}
TY  - JOUR
AU  - S. V. Polyakov
AU  - Yu. N. Karamzin
AU  - T. A. Kudryashova
AU  - I. V. Tsybulin
TI  - Exponential difference schemes for solution of boundary problems for diffusion-convection equations
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 121
EP  - 136
VL  - 28
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_7_a9/
LA  - ru
ID  - MM_2016_28_7_a9
ER  - 
%0 Journal Article
%A S. V. Polyakov
%A Yu. N. Karamzin
%A T. A. Kudryashova
%A I. V. Tsybulin
%T Exponential difference schemes for solution of boundary problems for diffusion-convection equations
%J Matematičeskoe modelirovanie
%D 2016
%P 121-136
%V 28
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_7_a9/
%G ru
%F MM_2016_28_7_a9
S. V. Polyakov; Yu. N. Karamzin; T. A. Kudryashova; I. V. Tsybulin. Exponential difference schemes for solution of boundary problems for diffusion-convection equations. Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 121-136. http://geodesic.mathdoc.fr/item/MM_2016_28_7_a9/