Exponential difference schemes for solution of boundary problems for diffusion-convection equations
Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 121-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical solution of boundary-value problems is considered for multidimensional equations of convection-diffusion (CDE). These equations are used for many physical processes in solids, liquids and gases. A new approach to the spatial approximation for such equations is proposed. This approach is based on a integral transformation of second order differential operators. A linear version of CDE was selected to simplify analysis. For this variant, a new exponential difference schemes were offered, algorithms of its implementation were developed, a brief analysis of the stability and convergence was fulfilled. Numerical testing of approach was executed for a two-dimensional problem of metallic particles motion in the water flow under influence of a constant magnetic field.
Mots-clés : Convection-Diffusion Equation (CDE)
Keywords: Integral Transformation, Finite-Difference Schemes, Iterations, Non-monotonic sweep procedure.
@article{MM_2016_28_7_a9,
     author = {S. V. Polyakov and Yu. N. Karamzin and T. A. Kudryashova and I. V. Tsybulin},
     title = {Exponential difference schemes for solution of boundary problems for diffusion-convection equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {121--136},
     publisher = {mathdoc},
     volume = {28},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_7_a9/}
}
TY  - JOUR
AU  - S. V. Polyakov
AU  - Yu. N. Karamzin
AU  - T. A. Kudryashova
AU  - I. V. Tsybulin
TI  - Exponential difference schemes for solution of boundary problems for diffusion-convection equations
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 121
EP  - 136
VL  - 28
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_7_a9/
LA  - ru
ID  - MM_2016_28_7_a9
ER  - 
%0 Journal Article
%A S. V. Polyakov
%A Yu. N. Karamzin
%A T. A. Kudryashova
%A I. V. Tsybulin
%T Exponential difference schemes for solution of boundary problems for diffusion-convection equations
%J Matematičeskoe modelirovanie
%D 2016
%P 121-136
%V 28
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_7_a9/
%G ru
%F MM_2016_28_7_a9
S. V. Polyakov; Yu. N. Karamzin; T. A. Kudryashova; I. V. Tsybulin. Exponential difference schemes for solution of boundary problems for diffusion-convection equations. Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 121-136. http://geodesic.mathdoc.fr/item/MM_2016_28_7_a9/

[1] A. A. Samarskii, A. P. Mikhailov, Principles of Mathematical Modeling: Ideas, Methods, Examples, Taylor Francis, London, 2002, 349 pp. | MR | MR | Zbl

[2] A. A. Samarskii, V. B. Andreev, Difference methods for elliptic equations, Mir, M., 1978, 350 pp. (French transl.) | MR

[3] Samarskii A. A., The theory of difference schemes, Marcel Dekker, Inc., New York–Basel, 2001, 762 pp. | MR | Zbl

[4] R. Li, Zh. Chen, W. Wu, Generalized difference methods for differential equations. Numerical analysis of finite volume methods, Dekker Inc., M., 2000, 459 pp. | MR | Zbl

[5] R. Eymard, T. R. Gallouet, R. Herbin, “The finite volume method”, Handnook of Numerical Analysis, VII, eds. P. G. Ciarlet, J. L. Lions, 2000, 713–1020 | MR | Zbl

[6] R. J. LeVeque, Numerical methods for conservation laws, Birkhauser, Basel, 2008, 232 pp. | MR

[7] M. P. Galanin, E. B. Savenkov, Metody chislennogo analiza matematicheskikh modelei, Bauman Moscow State Technical University, M., 2010, 591 pp.

[8] W. Gautschi, Numerical analysis, Springer, 2012, 588 pp.

[9] N. V. Karetkina, “An unconditionally stable difference scheme for parabolic equations containing first derivatives”, USSR Computational Mathematics and Mathematical Physics, 20:1 (1980), 257–262 | MR | Zbl

[10] E. Doolan, J. Miller, W. Shilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980, 198 pp. | MR | MR | Zbl

[11] S. V. Polyakov, V. A. Sablikov, “Lateral'nyi perenos fotoindutsirovannykh nositelei zryada v geterostrukturakh s dvumernym elektronnym gazom”, Matematicheskoe modelirovanie, 9:12 (1997), 76–86 | Zbl

[12] S. V. Polyakov, “Eksponentsial'nye skhemy dlya resheniya evolutsionnykh uravneniy na neregulyarnykh setkakh”, Uchenye zapiski Kazanskogo gosudarstvennogo universiteta, Seriya “Fiziko-matematicheskie nauki”, 149, no. 4, 2007, 121–131

[13] Yu. N. Karamzin, S. V. Polyakov, “Eksponentsial'nye konechno-ob'emnye skhemy dlya resheniya ellipticheskikh i parabolicheskikh uravnenii obshchego vida na neregulyarnykh setkakh”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy Vos'moi Vserossiiskoi Konferentsii, Kazan University, Kazan, 2010, 234–248

[14] A. A. Samarskii, “Monotonic difference schemes for elliptic and parabolic equations in the case of a non-selfadjoint elliptic operator”, USSR, 5:3 (1965), 212–217 | MR

[15] E. I. Golant, “Conjugate families of difference schemes for equations of parabolic type with lowest terms”, USSR Computational Mathematics and Mathematical Physics, 18:5 (1978), 88–95 | DOI | MR | Zbl

[16] S. V. Polyakov, “Eksponentsial'nye raznostnye skhemy dlya uravneniya”, Mathematica Montisnigri, XXV, 2012, 1–16

[17] S. V. Polyakov, “Exponential Difference Schemes with Double Integral Transformation for Solving Convection-Diffusion Equations”, Mathematical Models and Computer Simulations, 5:4 (2013), 338–340 | DOI | Zbl

[18] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1976, 532 pp. ; A. A. Samarskii, E. S. Nikolaev, Numerical Methods for Grid Equations, v. I, Direct Methods; v. II, Iterative Methods, Birkhäuser Verlag, Basel–Boston–Berlin, 1989, 502 pp. | MR | Zbl