Optimal control of sustainable development in biological rehabilitation of the Azov Sea
Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 96-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the application of the concept of sustainable development management to the task of combating the eutrophication of shallow water (on the example of the Azov Sea). When describing the state dynamics of the reservoir are PDEs that are solved numerically by a finite difference method. Dynamic problem of minimizing the cost of ecosystem maintaining of the reservoir in defined condition, which is interpreted as the requirement of sustainable development, is solved. Research and forecast complex was developed, which include mathematical models of hydrobiology of shallow water, a database of environmental data, and program library, used to design of development scenarios of ecological condition in the Azov Sea. The forecast of changes of concentration of malicious blue-green algae due to water pollution of shallow water by nutrients, which are caused rapid growth of these algae, was given. The influence of the spatial distribution of temperature, salinity on biological treatment of the Azov Sea through the introduction of green algaes, displaced toxic blue-green algaes. Using deigned research and forecast complex that is used the materials of expedition works, we can study the key mechanisms of formation of horizontal and vertical zones in the distribution of concentrations of nutrients, oxygen and plankton populations, to set the values of parameters control the amount of hydrogen sulfide and hypoxemic zones, to evaluate the possibility of biological treatment of the waters of the Azov Sea with the help of his introduction green algae Chlorella vulgaris BIN, followed by displacement of toxic most common in shallow waters the blue-green algae, such as Aphanizomenon flos-aquae, to rank eco-efficiency control factors the stability of the species composition of phytoplankton, including " algal bloom" of microalgae. Examples of numerical calculations and the analysis of the obtained results were given.
Keywords: optimal control, homeostasis, algae, grid, discrete model.
Mots-clés : simulation
@article{MM_2016_28_7_a7,
     author = {A. Nikitina and A. I. Sukhinov and G. A. Ugolnitsky and A. B. Usov and A. E. Chistyakov and M. Puchkin and I. S. Semenov},
     title = {Optimal control of sustainable development in biological rehabilitation of the {Azov} {Sea}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {96--106},
     publisher = {mathdoc},
     volume = {28},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_7_a7/}
}
TY  - JOUR
AU  - A. Nikitina
AU  - A. I. Sukhinov
AU  - G. A. Ugolnitsky
AU  - A. B. Usov
AU  - A. E. Chistyakov
AU  - M. Puchkin
AU  - I. S. Semenov
TI  - Optimal control of sustainable development in biological rehabilitation of the Azov Sea
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 96
EP  - 106
VL  - 28
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_7_a7/
LA  - ru
ID  - MM_2016_28_7_a7
ER  - 
%0 Journal Article
%A A. Nikitina
%A A. I. Sukhinov
%A G. A. Ugolnitsky
%A A. B. Usov
%A A. E. Chistyakov
%A M. Puchkin
%A I. S. Semenov
%T Optimal control of sustainable development in biological rehabilitation of the Azov Sea
%J Matematičeskoe modelirovanie
%D 2016
%P 96-106
%V 28
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_7_a7/
%G ru
%F MM_2016_28_7_a7
A. Nikitina; A. I. Sukhinov; G. A. Ugolnitsky; A. B. Usov; A. E. Chistyakov; M. Puchkin; I. S. Semenov. Optimal control of sustainable development in biological rehabilitation of the Azov Sea. Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 96-106. http://geodesic.mathdoc.fr/item/MM_2016_28_7_a7/

[1] A. I. Sukxinov, A. V. Nikitina, A. E. Chistiakov, “Modelirovanie ctsenariia biologicheskoi reabilotatsii Azovstkogo moria”, Matematicheskoe modelirovanie, 24:9 (2012), 3–21

[2] A. I. Sukhinov, A. E. Chistyakov, E. V. Alekseenko, “Numerical realization of the three-dimensional model of hydrodynamics for shallow water basins on a high-performance system”, Mathematical Models and Computer Simulations, 3:5 (2011), 562–574 | DOI | MR | Zbl

[3] A. I. Sukhinov, A. E. Chistyakov, E. F. Timofeeva, A. V. Shishenya, “Mathematical model for calculating coastal wave processes”, Mathematical Models and Computer Simulations, 5:2 (2013), 122–129 | DOI | MR | Zbl

[4] A. I. Sukxinov, E. V. Iakushev, “Kompleksnye okeanologicheskie issledovaniia Azovskogo moria v 28-m reise nauchno-issledovatelskogo sudna “Akvanavt””, Okeanologiia, 43:1 (2003), 44–53 | MR

[5] E. Alekseenko, A. Sukhinov, B. Roux, R. Kotarba, D. Fougere, “Coastal hydrodynamics in a windy lagoon”, Computers Fluids, 77 (2013), 24–35 | DOI

[6] E. V. Alekseenko, B. Roux, A. I. Sukhinov, R. Kotarba, D. Fougere, “Nonlinear hydrodynamics in a Mediterranean lagoon”, Nonlinear Processes in Geophysics, 20:2 (2013), 189–198 | DOI | MR

[7] A. G. Druzhinin, G. A. Ugolnitskii, Ustoichivoe razvitie territorialnykh sotsialno-ekonomicheskikh system: teoriia i praktika modelirovaniia, Vuzovskaia kniga, M., 2013, 224 pp.

[8] G. A. Ugolnitskii, “Teoretiko-igrovoe issledovanie nekotorykh sposobov ierarkhicheskogo upravleniia”, Izvestiia RAN. Teoriia i sistemy upravleniia, 2002, no. 1, 97–101

[9] G. A. Ugolnitskii, “Teoretiko-igrovie printsipy optimalnosti ierarkhicheskogo upravleniia ustoichivym razvitiem”, Izvestiia RAN. Teoriia i sistemy upravleniia, 2005, no. 4, 72–78 | MR

[10] G. A. Ugolnitskii, Ierarkhicheskoe upravlenie ustoichivym razvitiem, Fizmatlit, M., 2010, 336 pp.

[11] G. A. Ugolnitskii, A. B. Usov, “Issledovanie differentsialnykh modelei ierarkhicheskikh system ypravleniia putem ikh diskretizatsii”, Avtomatika i telemekhanika, 2013, no. 2, 109–122

[12] G. A. Ugolnitskii, A. B. Usov, “Trekhurovnevye sistemy upravleniia ekologo-ekonomicheskimi obieektami veernoi struktury”, Problemy upravleniia, 2010, no. 1, 26–32

[13] G. A. Ugolnitskii, A. B. Usov, “Dinamicheskie ierarkhicheskie igry dvukh lits v programmnykh strategiiakh i ikh prilozheniia”, Matematicheskaia teoriia igr i ee prilozheniia, 5:2 (2013), 82–104 | Zbl

[14] N. N. Olenev, A. A. Petrov, I. G. Pospelov, “Regulirovanie ekologicheskikh posledstvii ekonomicheskogo rosta”, Matematicheskoe modelirovanie, 10:8 (1998), 17–32 | MR

[15] S. Demberel, N. N. Olenev, I. G. Pospelov, “K matematicheskoi modeli vzaimodeistviia ekonomicheskikh i ekologicheskikh protsessov”, Matematicheskoe modelirovanie, 15:4 (2003), 107–121 | Zbl

[16] Grass D., Calkins J. P., Feichtinger G. et al., Optimal Control of Nonlinear Processes, Springer, 2008 | MR | Zbl

[17] V. V. Lesin, IU. P. Lisovets, Osnovy metodov optimizatsii, Izd-vo MAI, M., 1998, 340 pp.