Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_7_a6, author = {A. Yu. Krukovskiy and V. G. Novikov and I. P. Tsygvintsev}, title = {3D-simulation of noncentral laser pulse coupling with spherical tin target}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {81--95}, publisher = {mathdoc}, volume = {28}, number = {7}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_7_a6/} }
TY - JOUR AU - A. Yu. Krukovskiy AU - V. G. Novikov AU - I. P. Tsygvintsev TI - 3D-simulation of noncentral laser pulse coupling with spherical tin target JO - Matematičeskoe modelirovanie PY - 2016 SP - 81 EP - 95 VL - 28 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_7_a6/ LA - ru ID - MM_2016_28_7_a6 ER -
%0 Journal Article %A A. Yu. Krukovskiy %A V. G. Novikov %A I. P. Tsygvintsev %T 3D-simulation of noncentral laser pulse coupling with spherical tin target %J Matematičeskoe modelirovanie %D 2016 %P 81-95 %V 28 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_7_a6/ %G ru %F MM_2016_28_7_a6
A. Yu. Krukovskiy; V. G. Novikov; I. P. Tsygvintsev. 3D-simulation of noncentral laser pulse coupling with spherical tin target. Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 81-95. http://geodesic.mathdoc.fr/item/MM_2016_28_7_a6/
[1] Samarskii A. A., Popov Iu. P., Raznostnye metody resheniia zadach gazovoi dinamiki, Nauka, M., 1992 | MR
[2] Gasilov V. A. et al., “Neiavnaia dvukhsloinaia lagranzhevo-eilerova raznostnaia skhema gazovoi dinamiki na osnove soglasovannykh approksimatsii uravnenii balansov massy i impulsa”, Keldysh Institute preprints, 2015, 038, 22 pp.
[3] Gasilov V. A., Krukovskii A. Iu., Otochin A. A., “Kompleks programm RAZRIAD. Reshenie zadach magnitnoi gidrodinamiki v R-Z geometrii v dvukhtemperaturnom priblizhenii”, Keldysh Institute preprints, 1990, 150
[4] Gasilov V. A., Krukovskii A. Iu., Novikova T. P., Otochin A. A., Ob algoritmakh resheniia dvumernykh uravnenii magnitnoi gidrodinamiki v komplekse programm razriad, Preprint, No 36, IMM RAN, 1993
[5] Krukovskiy A. Yu., Popov I. V., “The conservative difference schemes in the mixed EulerianLagrangian variables for calculation of three-dimensional equations of gas dynamics”, Keldysh Institute preprints, 2012, 023, 11 pp. | MR
[6] Tsygvintsev I. P., Krukovskiy A. Yu., Novikov V. G., “Comparison of different methods for radiative transfer calculation for three-dimensional problems”, Keldysh Institute preprints, 2014, 048, 14 pp.
[7] Tsygvintsev I. P., Krukovskii A. Iu., Gasilov V. A., Novikov V. G., Popov I. V., “Setochno-luchevaia model i metodika rascheta pogloshcheniia lazernogo izlucheniia”, Matematicheskoe modelirovanie, 27:12 (2015), 96–108
[8] Krukovskiy A. Yu., Novikov V. G., Tsygvintsev I. P., “3DLINE code: numerical simulation of threedimensional non-stationary radiation gas dynamics problems”, Keldysh Institute preprints, 2013, 020, 24 pp.
[9] Bakshi V., EUV Sources for Lithography, SPIE Press, Bellingham, WA, 2005
[10] Koshelev K. N. et al., “RZLINE code modeling of distributed tin targets for laser-produced plasma sources of extreme ultraviolet radiation”, J. Micro/Nanolith. MEMS MOEMS, 11:2 (2012), 021112
[11] Basko M. M., Maruhn J. A., Tauschwitz An., Development of a 2D Radiation-Hydrodynamics Code RALEF for Laser Plasma Simulations, GSI Report 2010-1, GSI Helmholtzzentrum fur Schwerionenforschung GmbH, 2010, 410
[12] Goloviznin V. M., Samarskii A. A., Favorskii A. P., “Variatsionnyi podkhod k postroeniiu konechno-raznostnykh matematicheskikh modelei v gidrodinamike”, DAN SSSR, 235:6 (1977), 1285–1288 | MR | Zbl
[13] Samarskii A. A., Nikolaev E. S., Metody resheniia setochnykh uravnenii, Nauka, M., 1978 | MR
[14] Zel'dovich Ya. B., Raizer Yu. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press Inc., New York, 1966–1967
[15] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985, 304 pp.
[16] Kaiser T. B., “Laser ray tracing and power deposition on an unstructured three-dimensional grid”, Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics), 61:1 (2000), 895–905
[17] Lebo I. J., Tishkin V. F., Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo termoiadernogo sinteza metodami matematicheskogo modelirovaniia, Fizmatlit, M., 2006, 304 pp.
[18] Povarnitsyn M. E., Andreev N. E., Levashov P. R., Khishchenko R. V., Rosmej O. N., Dynamics of thin metal foils irradiated by moderate-contrast high-intensity laser beams, PACS numbers: 52.50.Jm, 52.38.-r, 79.20.Ds
[19] Nikiforov A. F., Novikov V. G., Uvarov V. B., Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State, Springer, 2006, 430 pp. | MR
[20] Braginskii S. I., “Transport Processes in a Plasma”, Reviews of Plasma Physics, Authorized translation from the Russian by Herbert Lashinsky, University of Maryland, USA, v. 1, ed. M. A. Leontovich, Consultants Bureau, New York, 1965, 205
[21] Basko M., Löwer Th., Kondrashov V. N., Kendl A., Sigel R., Meyer-ter-Vehn J., “Optical probing of laser-induced indirectly driven shock waves in aluminum”, Phys. Rev. E, 56:1 (1997), 1019–1031 | DOI
[22] Novikov V. G., Solomiannaia A. D., “Spektralnye kharakteristiki plazmy, soglasovannye s izlucheniem”, TVT, 36:6 (1998), 858–864
[23] Hybrid computing cluster K-100