3D-simulation of noncentral laser pulse coupling with spherical tin target
Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 81-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical model of plasma dynamics based on completely conservative difference scheme for three-dimensional equations of radiation gas dynamics describes. It is realized in 3DLINE code, which has been used for modeling of the central and non-central laser coupling to target to produce the source of radiation with specified properties.
Keywords: radiation gas dynamics, completely conservative difference scheme
Mots-clés : EUV-source simulation.
@article{MM_2016_28_7_a6,
     author = {A. Yu. Krukovskiy and V. G. Novikov and I. P. Tsygvintsev},
     title = {3D-simulation of noncentral laser pulse coupling with spherical tin target},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {81--95},
     publisher = {mathdoc},
     volume = {28},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_7_a6/}
}
TY  - JOUR
AU  - A. Yu. Krukovskiy
AU  - V. G. Novikov
AU  - I. P. Tsygvintsev
TI  - 3D-simulation of noncentral laser pulse coupling with spherical tin target
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 81
EP  - 95
VL  - 28
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_7_a6/
LA  - ru
ID  - MM_2016_28_7_a6
ER  - 
%0 Journal Article
%A A. Yu. Krukovskiy
%A V. G. Novikov
%A I. P. Tsygvintsev
%T 3D-simulation of noncentral laser pulse coupling with spherical tin target
%J Matematičeskoe modelirovanie
%D 2016
%P 81-95
%V 28
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_7_a6/
%G ru
%F MM_2016_28_7_a6
A. Yu. Krukovskiy; V. G. Novikov; I. P. Tsygvintsev. 3D-simulation of noncentral laser pulse coupling with spherical tin target. Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 81-95. http://geodesic.mathdoc.fr/item/MM_2016_28_7_a6/

[1] Samarskii A. A., Popov Iu. P., Raznostnye metody resheniia zadach gazovoi dinamiki, Nauka, M., 1992 | MR

[2] Gasilov V. A. et al., “Neiavnaia dvukhsloinaia lagranzhevo-eilerova raznostnaia skhema gazovoi dinamiki na osnove soglasovannykh approksimatsii uravnenii balansov massy i impulsa”, Keldysh Institute preprints, 2015, 038, 22 pp.

[3] Gasilov V. A., Krukovskii A. Iu., Otochin A. A., “Kompleks programm RAZRIAD. Reshenie zadach magnitnoi gidrodinamiki v R-Z geometrii v dvukhtemperaturnom priblizhenii”, Keldysh Institute preprints, 1990, 150

[4] Gasilov V. A., Krukovskii A. Iu., Novikova T. P., Otochin A. A., Ob algoritmakh resheniia dvumernykh uravnenii magnitnoi gidrodinamiki v komplekse programm razriad, Preprint, No 36, IMM RAN, 1993

[5] Krukovskiy A. Yu., Popov I. V., “The conservative difference schemes in the mixed EulerianLagrangian variables for calculation of three-dimensional equations of gas dynamics”, Keldysh Institute preprints, 2012, 023, 11 pp. | MR

[6] Tsygvintsev I. P., Krukovskiy A. Yu., Novikov V. G., “Comparison of different methods for radiative transfer calculation for three-dimensional problems”, Keldysh Institute preprints, 2014, 048, 14 pp.

[7] Tsygvintsev I. P., Krukovskii A. Iu., Gasilov V. A., Novikov V. G., Popov I. V., “Setochno-luchevaia model i metodika rascheta pogloshcheniia lazernogo izlucheniia”, Matematicheskoe modelirovanie, 27:12 (2015), 96–108

[8] Krukovskiy A. Yu., Novikov V. G., Tsygvintsev I. P., “3DLINE code: numerical simulation of threedimensional non-stationary radiation gas dynamics problems”, Keldysh Institute preprints, 2013, 020, 24 pp.

[9] Bakshi V., EUV Sources for Lithography, SPIE Press, Bellingham, WA, 2005

[10] Koshelev K. N. et al., “RZLINE code modeling of distributed tin targets for laser-produced plasma sources of extreme ultraviolet radiation”, J. Micro/Nanolith. MEMS MOEMS, 11:2 (2012), 021112

[11] Basko M. M., Maruhn J. A., Tauschwitz An., Development of a 2D Radiation-Hydrodynamics Code RALEF for Laser Plasma Simulations, GSI Report 2010-1, GSI Helmholtzzentrum fur Schwerionenforschung GmbH, 2010, 410

[12] Goloviznin V. M., Samarskii A. A., Favorskii A. P., “Variatsionnyi podkhod k postroeniiu konechno-raznostnykh matematicheskikh modelei v gidrodinamike”, DAN SSSR, 235:6 (1977), 1285–1288 | MR | Zbl

[13] Samarskii A. A., Nikolaev E. S., Metody resheniia setochnykh uravnenii, Nauka, M., 1978 | MR

[14] Zel'dovich Ya. B., Raizer Yu. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press Inc., New York, 1966–1967

[15] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985, 304 pp.

[16] Kaiser T. B., “Laser ray tracing and power deposition on an unstructured three-dimensional grid”, Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics), 61:1 (2000), 895–905

[17] Lebo I. J., Tishkin V. F., Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo termoiadernogo sinteza metodami matematicheskogo modelirovaniia, Fizmatlit, M., 2006, 304 pp.

[18] Povarnitsyn M. E., Andreev N. E., Levashov P. R., Khishchenko R. V., Rosmej O. N., Dynamics of thin metal foils irradiated by moderate-contrast high-intensity laser beams, PACS numbers: 52.50.Jm, 52.38.-r, 79.20.Ds

[19] Nikiforov A. F., Novikov V. G., Uvarov V. B., Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State, Springer, 2006, 430 pp. | MR

[20] Braginskii S. I., “Transport Processes in a Plasma”, Reviews of Plasma Physics, Authorized translation from the Russian by Herbert Lashinsky, University of Maryland, USA, v. 1, ed. M. A. Leontovich, Consultants Bureau, New York, 1965, 205

[21] Basko M., Löwer Th., Kondrashov V. N., Kendl A., Sigel R., Meyer-ter-Vehn J., “Optical probing of laser-induced indirectly driven shock waves in aluminum”, Phys. Rev. E, 56:1 (1997), 1019–1031 | DOI

[22] Novikov V. G., Solomiannaia A. D., “Spektralnye kharakteristiki plazmy, soglasovannye s izlucheniem”, TVT, 36:6 (1998), 858–864

[23] Hybrid computing cluster K-100