A basic lattice model of excitable medium: kinetic Monte Carlo simulations
Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simplest stochastic lattice model of an excitable medium is considered. Each lattice cell may be in one of the three states: excited, refractory and quiescent. The transitions between different cell states occur with prescribed probabilities. The model is intended for studying the transmission of excitation in the cardiac muscle or in the nerve fiber, as well as for studying epidemic spreading. Simulations of elementary events on a lattice are performed using Kinetic Monte Carlo simulations. In this way, a Markov chain of lattice states, which corresponds to the solution of the master equation, is generated. An effective algorithm for realization of Kinetic Monte Carlo simulations is suggested. At each time step of the algorithm the amount of arithmetic operations is practically independent on the lattice sizes; this allows performing simulations on the very large twoand three-dimensional lattices (above $10^9$ cells). It is shown that the model reproduces the main spatio-temporal patterns (solitary travelling pulses, pulse trains, concentric and spiral waves, “spiral turbulence”) typical for excitable media. The main properties of travelling pulses and spiral waves in the stochastic lattice model are investigated and they are compared with those known properties of deterministic equations of the reaction-diffusion type which are usually used to model excitable media.
Keywords: excitable medium, travelling pulses, spiral waves, lattice models, Kinetic Monte Carlo simulations.
@article{MM_2016_28_7_a0,
     author = {A. G. Makeev and N. L. Semendyaeva},
     title = {A basic lattice model of excitable medium: kinetic {Monte} {Carlo} simulations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {28},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_7_a0/}
}
TY  - JOUR
AU  - A. G. Makeev
AU  - N. L. Semendyaeva
TI  - A basic lattice model of excitable medium: kinetic Monte Carlo simulations
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 3
EP  - 19
VL  - 28
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_7_a0/
LA  - ru
ID  - MM_2016_28_7_a0
ER  - 
%0 Journal Article
%A A. G. Makeev
%A N. L. Semendyaeva
%T A basic lattice model of excitable medium: kinetic Monte Carlo simulations
%J Matematičeskoe modelirovanie
%D 2016
%P 3-19
%V 28
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_7_a0/
%G ru
%F MM_2016_28_7_a0
A. G. Makeev; N. L. Semendyaeva. A basic lattice model of excitable medium: kinetic Monte Carlo simulations. Matematičeskoe modelirovanie, Tome 28 (2016) no. 7, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2016_28_7_a0/

[1] Wiener N., Rosenblueth A., “The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle”, Arch. Inst. Cardiologia de Mexico, XVI:3–4 (1946), 205–265 ; Kiberneticheskii sbornik, 3, Izd. inostr. lit., M., 1961, 7–56 | MR

[2] Vasilev V. A., Romanovskii Iu. M., Iakhno V. G., Avtovolnovye protsessy, Nauka, M., 1987, 240 pp.

[3] Loskutov A. Iu., Mikhailov A. S., Vvedenie v sinergetiku, Uch. rukovodstvo, Nauka, M., 1990, 272 pp.

[4] Myurrei Dzh., Matematicheskaya biologiya, v. 1, Vvedenie, Regulyarnaya i khaoticheskaya dinamika, In-t kompyuternykh issled., Izhevsk, 2009, 774 pp.; т. 2, Пространственные модели и их приложения в биомедицине, Регулярная и хаотическая динамика, Ин-т компьютерных исслед., Ижевск, 2011, 1104 с.; Murray J. D., Mathematical biology, v. I, An introduction, Springer-Verlag, New York, 2002, 551 pp. ; v. II, Spatial models and biomedical applications, Springer-Verlag, Berlin–Heidelberg, 2003, 811 pp. | MR | Zbl

[5] Greenberg J. M., Hastings S. P., “Spatial patterns for discrete models of diffusion in excitable media”, SIAM J. Appl. Math., 34:3 (1978), 515–523 | DOI | MR | Zbl

[6] Bortz A. B., Kalos M. H., Lebowitz J. L., “A new algorithm for Monte Carlo simulation of Ising spin systems”, J. Comp. Phys., 17 (1975), 10–18 | DOI

[7] Gillespie D. T., “A general method for numerically simulating the stochastic time evolution of coupled chemical reactions”, J. Comp. Phys., 22 (1976), 403–434 | DOI | MR

[8] De Souza D. R., Tome T., “Stochastic lattice gas model describing the dynamics of the SIRS epidemic process”, Physica A, 389 (2010), 1142–1150 | DOI

[9] Shulze T. P., “Kinetic Monte Carlo simulations with minimal searching”, Phys. Rev. E, 65 (2002), 036704 | DOI

[10] Chatterjee A., Vlachos D. G., “An overview of spatial microscopic and accelerated kinetic Monte Carlo methods”, J. Computer-Aided Mater Des., 14 (2007), 253–308 | DOI

[11] Bar M., Eiswirth M., “Turbulence due to spiral breakup in a continuous excitable medium”, Phys. Rev. E, 48 (1993), R1635–R1637 | DOI

[12] Winfree A. T., “Electrical turbulence in three-dimensional heart muscle”, Science, 266 (1994), 1003–1006 | DOI

[13] Fenton F. H., Cherry E. M., Hastings H. M., Evans S. J., “Multiple Mechanisms of Spiral Wave Breakup in a Model of Cardiac Electrical Activity”, Chaos, 12 (2002), 852–892 | DOI | MR

[14] Garcia-Ojalvo J., Schimansky-Geier L., “Noise-induced spiral dynamics in excitable media”, Europhys. Lett., 47:3 (1999), 298–303 | DOI

[15] Qu Z., Hu G., Garfinkel A., Weiss J. N., “Nonlinear and stochastic dynamics in the heart”, Physics Reports, 543 (2014), 61–162 | DOI | MR

[16] Makeev A. G., Kurkina E. S., Kevrekidis I. G., “Kinetic Monte Carlo simulations of travelling pulses and spiral waves in the lattice Lotka–Volterra model”, Chaos, 22 (2012), 023141, 12 pp. | DOI | MR | Zbl

[17] Vendelin M., Beraud N., Guerrero K., Andrienko T., Kuznetsov A. V., Olivares J., Kay L., Saks V. A., “Mitochondrial regular arrangement in muscle cells: a “crystal-like” pattern”, American Journal of Physiology — Cell Physiology, 288:3 (2005), C757–C767 | DOI

[18] Cheng H., Lederer W. J., “Calcium sparks”, Physiol. Rev., 88 (2008), 1491–1545 | DOI