Parallel multigrid technique: reduction to independent problems
Matematičeskoe modelirovanie, Tome 28 (2016) no. 6, pp. 89-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are two obvious reasons why a palallel multigrid algorithm may perform unsatisfactorily: load imbalance and communication overhead. Large communication overhead and processor idleness take place on very coarse grids. The paper represents the further development of the parallel robust multigrid technique based on the reduction of the finite-difference boundary value problem to a set of independent problems. Robust Multigrid Technique is a single grid algorithm used essential multigrid principle to minimize the number of the problem-dependent components. Usage of the same grid for the correction computing eliminates all problems with load imbalance and communication overhead on the coarse grids. In some cases volume of the stored data and execution time can be reduced and almost full parallelism can be obtained. Results of the numerical experiments with finite-difference scheme of the sixth approximation order are given.
Keywords: geometric multigrid methods, parallel algorithm.
@article{MM_2016_28_6_a6,
     author = {S. I. Martynenko and V. M. Volokhov and L. S. Yanovskiy},
     title = {Parallel multigrid technique: reduction to independent problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_6_a6/}
}
TY  - JOUR
AU  - S. I. Martynenko
AU  - V. M. Volokhov
AU  - L. S. Yanovskiy
TI  - Parallel multigrid technique: reduction to independent problems
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 89
EP  - 97
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_6_a6/
LA  - ru
ID  - MM_2016_28_6_a6
ER  - 
%0 Journal Article
%A S. I. Martynenko
%A V. M. Volokhov
%A L. S. Yanovskiy
%T Parallel multigrid technique: reduction to independent problems
%J Matematičeskoe modelirovanie
%D 2016
%P 89-97
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_6_a6/
%G ru
%F MM_2016_28_6_a6
S. I. Martynenko; V. M. Volokhov; L. S. Yanovskiy. Parallel multigrid technique: reduction to independent problems. Matematičeskoe modelirovanie, Tome 28 (2016) no. 6, pp. 89-97. http://geodesic.mathdoc.fr/item/MM_2016_28_6_a6/

[1] R. P. Fedorenko, “A relaxation method for solving elliptic difference equations”, USSR Comp. Math. Math. Phys., 1:5 (1962), 1092–1096 | DOI | MR | Zbl

[2] R. P. Fedorenko, “The speed of convergence of one iterative process”, USSR Comp. Math. Math. Phys., 4:3 (1964), 227–235 | DOI | MR

[3] N. S. Bakhvalov, “On the convergence of a relaxation method with natural constraints on the elliptic operator”, USSR Comp. Math. Math. Phys., 6 (1966), 101–135 | DOI | MR | Zbl

[4] U. Trottenberg, C. W. Oosterlee, A. Schüller, Multigrid, Academic Press, London, 2001, 631 pp. | MR | Zbl

[5] S. I. Martynenko, “Robust multigrid technique for solving partial differential equations on structured grids”, Numerical Methods and Programming, 1:1 (2000), 83–100

[6] S. I. Martynenko, Universalnaya mnogosetochnaia tehnologiia, IPM RAN, M., 2013, 244 pp.

[7] S. I. Martynenko, “Rasparallelivanie universalnoy mnogosetochnoy tehnologii”, Vychislitelnye metody i programmirovanie, 4:1 (2003), 45–51 | MR | Zbl

[8] S. I. Martynenko, “Potentialities of the Robust Multigrid Technique”, Comp. Meth. in Appl. Math., 10:1 (2010), 87–94 | MR | Zbl

[9] S. I. Martynenko, “O postroenii parallelnyh mnogosetochnyh algoritmov”, Matematicheskoe modelirovanie i chislennye metody, 6:2 (2015), 105–120 | MR

[10] S. I. Martynenko, “Robust Multigrid Technique”, Mathematical Models and Computer Simulations, 2:2 (2010), 232–244 | DOI | MR | Zbl

[11] G. A. Baker, P. Graves-Morris, Pade Approximants, Encyclopedia of Mathematics and Its Applications, Addison-Wesley Publishing company, 1981