Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_6_a1, author = {A. V. Berezin and Yu. A. Volkov and M. B. Markov and I. A. Tarakanov}, title = {The model of radiation-induced conductivity in silicon}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {18--32}, publisher = {mathdoc}, volume = {28}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_6_a1/} }
TY - JOUR AU - A. V. Berezin AU - Yu. A. Volkov AU - M. B. Markov AU - I. A. Tarakanov TI - The model of radiation-induced conductivity in silicon JO - Matematičeskoe modelirovanie PY - 2016 SP - 18 EP - 32 VL - 28 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_6_a1/ LA - ru ID - MM_2016_28_6_a1 ER -
A. V. Berezin; Yu. A. Volkov; M. B. Markov; I. A. Tarakanov. The model of radiation-induced conductivity in silicon. Matematičeskoe modelirovanie, Tome 28 (2016) no. 6, pp. 18-32. http://geodesic.mathdoc.fr/item/MM_2016_28_6_a1/
[1] M. I. Panasiuk, L. S. Novikov (red.), Model kosmosa, v 2t., v. 2, Vozdeistvie kosmicheskoi sredy na materialy i oborudovanie kosmicheskikh apparatov, KDU, M., 2007, 1144 pp.
[2] T. P. Ma, P. V. Dressendorfer (eds.), Ionizing radiation effects in MOS devices circuits, John Wiley and Sons, 1989
[3] A. I. Chumakov, Deistvie kosmicheskoi radiatsii na integral'nye skhemy, Radio i sviaz', M., 2004, 319 pp.
[4] M. E. Zhukovskii, M. B. Markov, “Matematicheskoe modelirovanie elektromagnitnykh polei radiatsionnogo proiskhozhdeniia”, Entsiklopediia nizkotemperaturnoi plazmy, seriia B, chast 2, v. VII-1, 2009, 628–652
[5] M. B. Markov, M. E. Zhukovskiy, “Modeling the radiative electromagnetic field”, International Journal of Computing Science and Mathematics, 2:1/2 (2008), 110–131 | DOI | MR | Zbl
[6] E. M. Lifshits, L. P. Pitaevskii, Course of Theoretical Physics, v. 9, Statistical Physics: Theory of the Condensed State, Butterworth–Heinemann, 1980
[7] M. V. Fischetti, “Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures”, IEEE Trans. Electron Devices, 38 (1991), 634 | DOI
[8] X. Wang, V. Chandarmouli, C. M. Mazar, A. F. Tasch, “Simulation program suitable for hot carrier studies: An efficient multiband Monte Carlo model using both full and analytic band structure description for silicon”, J. Appl. Phys., 73 (1993), 3339 | DOI
[9] E. Gnani, S. Reggiani, M. Rudan, “Density of states and group velocity of electrons in SiO$_2$ calculated from a full band structure”, Phys. Rev. B, 66 (2002), 195205 | DOI
[10] P. A. Childs, D. W. Dyke, “Analytic expressions for impact ionization rates and secondary particle energy distributions in semiconductors”, Appl. Phys. Lett., 74:18 (1999), 2646–2648 | DOI
[11] B. M. Smirnov, “Kinetics of electrons in gases and condensed systems”, UFN, 172 (2002), 1411–1447 | DOI
[12] A. I. Anselm, Vvedenie v teoriiu poluprovodnikov, Nauka, M., 1978, 618 pp.
[13] P. Yu, M. Cardona, Fundamentals of Semiconductors, Springer Science Business Media, 2010, 795 pp.
[14] M. V. Fichetti, S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys”, J. Appl. Phys., 80 (1996), 2234–2252 | DOI
[15] E. Conwell, High Field Transport in Semiconductors, Academic Press Inc., 1967, 293 pp.
[16] V. L. Ginzburg, A. V. Gurevich, “Nonlinear phenonmena in a Plasma located in an alternating electromagnetic field”, Sov. Phys. Usp., 1960, no. 3, 175–194 | DOI | DOI | MR
[17] E. Sonwell, V. F. Weisskopf, “Theory of impurity scattering in semiconductors”, Phys. Rev., 77 (1950), 388 | DOI
[18] H. Brooks, “Scattering by Ionized Impurities in Semiconductors”, Phys. Rev., 83 (1951), 879
[19] M. V. Fischetti, S. E. Laux, E. Crabbe, Understanding hot-electron transport in silicon devices: is there a shortcut?, J. Appl. Phys., 78:2 (1995), 1058–1087 | DOI | MR
[20] Y. M. Niquet, D. Rideau, C. Tavenier, H. Jaouen, X. Blase, “Onsite matrix elements of the tightbinding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys”, Phys. Rev. B, 79 (2009), 245201 | DOI
[21] O. D. Restrepo, K. Varga, S. T. Pantelides, “First-principles calculations of electron mobilities in silicon: Phonon and Coulomb scattering”, Appl. Phys. Lett., 94 (2009), 212103 | DOI
[22] M. Michaillat, D. Rideau, F. Aniel, C. Tavernier, H. Jaouen, “Full-Band Monte Carlo investigation of hole mobilities in SiGe, SiC and SiGeC alloys”, Thin Solid Films, 518 (2010), 24378 | DOI
[23] A. V. Berezin, A. A. Kriukov, B. D. Pliushchenkov, “Metod vychisleniia elektromagnitnogo polia s zadannym volnovym frontom”, Matematicheskoe modelirovanie, 23:3 (2011), 109–126 | MR | Zbl
[24] C. Canali, C. Jacobini, F. Nava, G. Ottavini, A. A. Quaranta, “Electron drift velocity in silicon”, Phys. Rev. B, 12 (1975), 2265 | DOI
[25] E. Pop, S. Sinha, K. E. Goodson, “Monte Carlo modeling of heat generation in electronic nanostructures”, Proc. of IMECE02/HT-32124 (2002), 1–6