The model of radiation-induced conductivity in silicon
Matematičeskoe modelirovanie, Tome 28 (2016) no. 6, pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conduction current excited by the external flux of penetrating radiation is considered. Quantum kinetic equations for conduction electron and valence band hole distribution functions in phase space of position and quasi-momentum are used. Effective masses, group velocities, densities of states are determined on the base of band theory. The approximation of continuous energy losses due to scattering on lattice defects is carried out. The model is validated by the comparison with the experimental data on the average electron speed dependence on electric field strength and on speed of temperature transmission from electrons to lattice. The calculation of silicon radiation conductivity is carried out, the accordance of results with theoretical estimates is demonstrated.
Keywords: kinetic equation, radiation conductivity, density of states, quasi-momentum.
@article{MM_2016_28_6_a1,
     author = {A. V. Berezin and Yu. A. Volkov and M. B. Markov and I. A. Tarakanov},
     title = {The model of radiation-induced conductivity in silicon},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_6_a1/}
}
TY  - JOUR
AU  - A. V. Berezin
AU  - Yu. A. Volkov
AU  - M. B. Markov
AU  - I. A. Tarakanov
TI  - The model of radiation-induced conductivity in silicon
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 18
EP  - 32
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_6_a1/
LA  - ru
ID  - MM_2016_28_6_a1
ER  - 
%0 Journal Article
%A A. V. Berezin
%A Yu. A. Volkov
%A M. B. Markov
%A I. A. Tarakanov
%T The model of radiation-induced conductivity in silicon
%J Matematičeskoe modelirovanie
%D 2016
%P 18-32
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_6_a1/
%G ru
%F MM_2016_28_6_a1
A. V. Berezin; Yu. A. Volkov; M. B. Markov; I. A. Tarakanov. The model of radiation-induced conductivity in silicon. Matematičeskoe modelirovanie, Tome 28 (2016) no. 6, pp. 18-32. http://geodesic.mathdoc.fr/item/MM_2016_28_6_a1/

[1] M. I. Panasiuk, L. S. Novikov (red.), Model kosmosa, v 2t., v. 2, Vozdeistvie kosmicheskoi sredy na materialy i oborudovanie kosmicheskikh apparatov, KDU, M., 2007, 1144 pp.

[2] T. P. Ma, P. V. Dressendorfer (eds.), Ionizing radiation effects in MOS devices circuits, John Wiley and Sons, 1989

[3] A. I. Chumakov, Deistvie kosmicheskoi radiatsii na integral'nye skhemy, Radio i sviaz', M., 2004, 319 pp.

[4] M. E. Zhukovskii, M. B. Markov, “Matematicheskoe modelirovanie elektromagnitnykh polei radiatsionnogo proiskhozhdeniia”, Entsiklopediia nizkotemperaturnoi plazmy, seriia B, chast 2, v. VII-1, 2009, 628–652

[5] M. B. Markov, M. E. Zhukovskiy, “Modeling the radiative electromagnetic field”, International Journal of Computing Science and Mathematics, 2:1/2 (2008), 110–131 | DOI | MR | Zbl

[6] E. M. Lifshits, L. P. Pitaevskii, Course of Theoretical Physics, v. 9, Statistical Physics: Theory of the Condensed State, Butterworth–Heinemann, 1980

[7] M. V. Fischetti, “Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures”, IEEE Trans. Electron Devices, 38 (1991), 634 | DOI

[8] X. Wang, V. Chandarmouli, C. M. Mazar, A. F. Tasch, “Simulation program suitable for hot carrier studies: An efficient multiband Monte Carlo model using both full and analytic band structure description for silicon”, J. Appl. Phys., 73 (1993), 3339 | DOI

[9] E. Gnani, S. Reggiani, M. Rudan, “Density of states and group velocity of electrons in SiO$_2$ calculated from a full band structure”, Phys. Rev. B, 66 (2002), 195205 | DOI

[10] P. A. Childs, D. W. Dyke, “Analytic expressions for impact ionization rates and secondary particle energy distributions in semiconductors”, Appl. Phys. Lett., 74:18 (1999), 2646–2648 | DOI

[11] B. M. Smirnov, “Kinetics of electrons in gases and condensed systems”, UFN, 172 (2002), 1411–1447 | DOI

[12] A. I. Anselm, Vvedenie v teoriiu poluprovodnikov, Nauka, M., 1978, 618 pp.

[13] P. Yu, M. Cardona, Fundamentals of Semiconductors, Springer Science Business Media, 2010, 795 pp.

[14] M. V. Fichetti, S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys”, J. Appl. Phys., 80 (1996), 2234–2252 | DOI

[15] E. Conwell, High Field Transport in Semiconductors, Academic Press Inc., 1967, 293 pp.

[16] V. L. Ginzburg, A. V. Gurevich, “Nonlinear phenonmena in a Plasma located in an alternating electromagnetic field”, Sov. Phys. Usp., 1960, no. 3, 175–194 | DOI | DOI | MR

[17] E. Sonwell, V. F. Weisskopf, “Theory of impurity scattering in semiconductors”, Phys. Rev., 77 (1950), 388 | DOI

[18] H. Brooks, “Scattering by Ionized Impurities in Semiconductors”, Phys. Rev., 83 (1951), 879

[19] M. V. Fischetti, S. E. Laux, E. Crabbe, Understanding hot-electron transport in silicon devices: is there a shortcut?, J. Appl. Phys., 78:2 (1995), 1058–1087 | DOI | MR

[20] Y. M. Niquet, D. Rideau, C. Tavenier, H. Jaouen, X. Blase, “Onsite matrix elements of the tightbinding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys”, Phys. Rev. B, 79 (2009), 245201 | DOI

[21] O. D. Restrepo, K. Varga, S. T. Pantelides, “First-principles calculations of electron mobilities in silicon: Phonon and Coulomb scattering”, Appl. Phys. Lett., 94 (2009), 212103 | DOI

[22] M. Michaillat, D. Rideau, F. Aniel, C. Tavernier, H. Jaouen, “Full-Band Monte Carlo investigation of hole mobilities in SiGe, SiC and SiGeC alloys”, Thin Solid Films, 518 (2010), 24378 | DOI

[23] A. V. Berezin, A. A. Kriukov, B. D. Pliushchenkov, “Metod vychisleniia elektromagnitnogo polia s zadannym volnovym frontom”, Matematicheskoe modelirovanie, 23:3 (2011), 109–126 | MR | Zbl

[24] C. Canali, C. Jacobini, F. Nava, G. Ottavini, A. A. Quaranta, “Electron drift velocity in silicon”, Phys. Rev. B, 12 (1975), 2265 | DOI

[25] E. Pop, S. Sinha, K. E. Goodson, “Monte Carlo modeling of heat generation in electronic nanostructures”, Proc. of IMECE02/HT-32124 (2002), 1–6