Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_5_a8, author = {V. V. Kurtc and I. E. Anufriev}, title = {Multirate numerical scheme for large-scale vehicle traffic simulation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {124--134}, publisher = {mathdoc}, volume = {28}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_5_a8/} }
V. V. Kurtc; I. E. Anufriev. Multirate numerical scheme for large-scale vehicle traffic simulation. Matematičeskoe modelirovanie, Tome 28 (2016) no. 5, pp. 124-134. http://geodesic.mathdoc.fr/item/MM_2016_28_5_a8/
[1] C. Gear, D. Wells, “Multirate linear multistep methods”, BIT, 24 (1984), 484–502 | DOI | MR | Zbl
[2] M. Gunther, A. Kvaerno, P. Rentrop, “Multirate partitioned Runge–Kutta methods”, BIT, 41 (2001), 504–514 | DOI | MR | Zbl
[3] A. Bartel, M. Gunther, “A multirate W-method for electrical networks in state space formulation”, J. Comput. Appl. Math., 147 (2002), 411–425 | DOI | MR | Zbl
[4] A. Kvaerno, “Stability of multirate Runge–Kutta schemes”, Int. J. Differ. Equ. Appl., 1(A) (2000), 97–105 | MR | Zbl
[5] A. Logg, “Multi-adaptive Galerkin methods for ODEs, I”, SIAM J. Sci. Comput., 24 (2003), 1879–1902 | DOI | MR | Zbl
[6] A. Logg, “Multi-adaptive Galerkin methods for ODEs. II: Implementation and applications”, SIAM J. Sci. Comput., 25 (2003), 1119–1141 | DOI | MR | Zbl
[7] C. Engstler, C. Lubich, “Multirate extrapolation methods for differential equations with different time scales”, Computing, 58 (1997), 173–185 | DOI | MR | Zbl
[8] C. Engstler, C. Lubich, “MUR8: A multirate extension of the eight-order Dormand–Prince method”, Appl. Numer. Math., 25 (1997), 185–192 | DOI | MR | Zbl
[9] V. Savcenco, W. Hundsdorfer, J. G. Verwer, “A multirate time stepping strategy for stiff ordinary differential equations”, BIT, 47 (2007), 137–155 | DOI | MR | Zbl
[10] W. Hundsdorfer, V. Savcenco, “Analysis of a multirate theta-method for stiff ODEs”, Appl. Numer. Math., 59 (2009), 693–706 | DOI | MR | Zbl
[11] V. Kurtc, I. Anufriev, “Local stability conditions and calibrating procedure for new car-following models used in driving simulators”, Proceedings of the 10th Conference on Traffic and Granular Flow'13, 453–461 | DOI
[12] M. Treiber, A. Henneke, D. Helbing, “Congested traffic states in empirical observations and microscopic simulations”, Phys. Rev. E, 62 (2000), 1805–1824 | DOI
[13] S. Skelboe, “Stability properties of backward differentiation multirate formulas”, Appl. Numer. Math., 5 (1989), 151–160 | DOI | MR | Zbl
[14] A. Verhoeven, E. J. W. ter Maten, R. M. M. Mattheij, B. Tasic, Stability analysis of the BDF slowest first multirate methods, CASA-Report 0704, Technische Universiteit Eindhoven, Eindhoven, 2007 | MR
[15] L. F. Shampine, I. Gladwell, S. Thompson, Solving ODEs with Matlab, Cambridge University Press, New York, 2003 | MR