Multirate numerical scheme for large-scale vehicle traffic simulation
Matematičeskoe modelirovanie, Tome 28 (2016) no. 5, pp. 124-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Citywide traffic contains hundreds of thousands vehicles with different scenarios of their behavior. It leads to solving tremendous ODE systems which components have wide range of variation rates in case of microscopic approach. In this paper we introduce a multirate numerical scheme with self-adjusting time stepping strategy. Instead of using a single step size for the whole system, the step size for each component is determined by estimating its own local variation. Stability analysis for developed scheme is performed and stability conditions are obtained. Presented multirate scheme provides a significant speed-up in CPU times compared to the corresponding single-rate one. The use of multiple time steps admits parallel computing.
Keywords: multirate time stepping, a priori estimates, stability, citywide microscopic traffic simulation, ordinary differential equations.
@article{MM_2016_28_5_a8,
     author = {V. V. Kurtc and I. E. Anufriev},
     title = {Multirate numerical scheme for large-scale vehicle traffic simulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {124--134},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_5_a8/}
}
TY  - JOUR
AU  - V. V. Kurtc
AU  - I. E. Anufriev
TI  - Multirate numerical scheme for large-scale vehicle traffic simulation
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 124
EP  - 134
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_5_a8/
LA  - ru
ID  - MM_2016_28_5_a8
ER  - 
%0 Journal Article
%A V. V. Kurtc
%A I. E. Anufriev
%T Multirate numerical scheme for large-scale vehicle traffic simulation
%J Matematičeskoe modelirovanie
%D 2016
%P 124-134
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_5_a8/
%G ru
%F MM_2016_28_5_a8
V. V. Kurtc; I. E. Anufriev. Multirate numerical scheme for large-scale vehicle traffic simulation. Matematičeskoe modelirovanie, Tome 28 (2016) no. 5, pp. 124-134. http://geodesic.mathdoc.fr/item/MM_2016_28_5_a8/

[1] C. Gear, D. Wells, “Multirate linear multistep methods”, BIT, 24 (1984), 484–502 | DOI | MR | Zbl

[2] M. Gunther, A. Kvaerno, P. Rentrop, “Multirate partitioned Runge–Kutta methods”, BIT, 41 (2001), 504–514 | DOI | MR | Zbl

[3] A. Bartel, M. Gunther, “A multirate W-method for electrical networks in state space formulation”, J. Comput. Appl. Math., 147 (2002), 411–425 | DOI | MR | Zbl

[4] A. Kvaerno, “Stability of multirate Runge–Kutta schemes”, Int. J. Differ. Equ. Appl., 1(A) (2000), 97–105 | MR | Zbl

[5] A. Logg, “Multi-adaptive Galerkin methods for ODEs, I”, SIAM J. Sci. Comput., 24 (2003), 1879–1902 | DOI | MR | Zbl

[6] A. Logg, “Multi-adaptive Galerkin methods for ODEs. II: Implementation and applications”, SIAM J. Sci. Comput., 25 (2003), 1119–1141 | DOI | MR | Zbl

[7] C. Engstler, C. Lubich, “Multirate extrapolation methods for differential equations with different time scales”, Computing, 58 (1997), 173–185 | DOI | MR | Zbl

[8] C. Engstler, C. Lubich, “MUR8: A multirate extension of the eight-order Dormand–Prince method”, Appl. Numer. Math., 25 (1997), 185–192 | DOI | MR | Zbl

[9] V. Savcenco, W. Hundsdorfer, J. G. Verwer, “A multirate time stepping strategy for stiff ordinary differential equations”, BIT, 47 (2007), 137–155 | DOI | MR | Zbl

[10] W. Hundsdorfer, V. Savcenco, “Analysis of a multirate theta-method for stiff ODEs”, Appl. Numer. Math., 59 (2009), 693–706 | DOI | MR | Zbl

[11] V. Kurtc, I. Anufriev, “Local stability conditions and calibrating procedure for new car-following models used in driving simulators”, Proceedings of the 10th Conference on Traffic and Granular Flow'13, 453–461 | DOI

[12] M. Treiber, A. Henneke, D. Helbing, “Congested traffic states in empirical observations and microscopic simulations”, Phys. Rev. E, 62 (2000), 1805–1824 | DOI

[13] S. Skelboe, “Stability properties of backward differentiation multirate formulas”, Appl. Numer. Math., 5 (1989), 151–160 | DOI | MR | Zbl

[14] A. Verhoeven, E. J. W. ter Maten, R. M. M. Mattheij, B. Tasic, Stability analysis of the BDF slowest first multirate methods, CASA-Report 0704, Technische Universiteit Eindhoven, Eindhoven, 2007 | MR

[15] L. F. Shampine, I. Gladwell, S. Thompson, Solving ODEs with Matlab, Cambridge University Press, New York, 2003 | MR