Keywords: discontinuous finite element method, triangular grid, discrete ordinates, barycentric coordinates.
@article{MM_2016_28_5_a5,
author = {E. P. Sychugova},
title = {Spatial approximation of the transport equation on triangle grid by the linear discontinuous finite element method},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {81--94},
year = {2016},
volume = {28},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2016_28_5_a5/}
}
TY - JOUR AU - E. P. Sychugova TI - Spatial approximation of the transport equation on triangle grid by the linear discontinuous finite element method JO - Matematičeskoe modelirovanie PY - 2016 SP - 81 EP - 94 VL - 28 IS - 5 UR - http://geodesic.mathdoc.fr/item/MM_2016_28_5_a5/ LA - ru ID - MM_2016_28_5_a5 ER -
E. P. Sychugova. Spatial approximation of the transport equation on triangle grid by the linear discontinuous finite element method. Matematičeskoe modelirovanie, Tome 28 (2016) no. 5, pp. 81-94. http://geodesic.mathdoc.fr/item/MM_2016_28_5_a5/
[1] E. P. Sychugova, “Reshenie uravneniia perenosa metodom konechnykh elementov na nestrukturirovannykh treugolnykh setkakh”, Keldysh Institute preprints, 2013, 085, 24 pp.
[2] D. J. Miller, K. A. Mathews, C. R. Brennan, “Split-Cell Discrete Ordinates Transport on an Unstructured Grid of Triangular Cells”, Transport Theory Statist. Phys., 25:7 (1996), 833–867 | DOI
[3] R. L. Childs, W. A. Rhoades, Theoretical Basis of the Linear Nodal and Linear Characteristic Methods in the TORT Computer Code, ORNL/TM-12246, Oak Ridge National Laboratory, 1993
[4] O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, v. 1, 4th ed., McGraw-Hill Book Company, NY, 1994, 689 pp. | MR
[5] H. Greenspan, C. N. Kelber, D. Okrent (eds.), Computing methods in reactor physics, Gordon and Breach, NY, 1968, 710 pp. | MR | Zbl
[6] O. C. Zienkiewicz, K. Morgan, Finite elements and approximation, Wiley, NY, 1983, 328 pp. | MR | MR | Zbl
[7] I. N. Bronshtein, K. A. Semendiaev, Spravochnik po matematike dlia inzhenerov i uchashchikhsia vtuzov, Nauka, M., 1989, 544 pp.
[8] E. W. Larsen, “Comparison of Spatial Approximation Methods for the $S_N$ Equations in $x,y$ Geometry”, Trans. Am. Nucl. Soc., 33 (1979), 317–318