Spatial approximation of the transport equation on triangle grid by the linear discontinuous finite element method
Matematičeskoe modelirovanie, Tome 28 (2016) no. 5, pp. 81-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Discontinuous Finite Element Method (DFEM) is considered for solving the transport equation on triangular grid, in which the Galerkin spatial approximation with linear base functions is used. It is proposed the comparison of the numerical solution of two test problems obtained by the DFEM on triangular grid and Diamond Differencing scheme and Linear Nodal method on rectangular grid with the analytical solution.
Mots-clés : transport equation
Keywords: discontinuous finite element method, triangular grid, discrete ordinates, barycentric coordinates.
@article{MM_2016_28_5_a5,
     author = {E. P. Sychugova},
     title = {Spatial approximation of the transport equation on triangle grid by the linear discontinuous finite element method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_5_a5/}
}
TY  - JOUR
AU  - E. P. Sychugova
TI  - Spatial approximation of the transport equation on triangle grid by the linear discontinuous finite element method
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 81
EP  - 94
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_5_a5/
LA  - ru
ID  - MM_2016_28_5_a5
ER  - 
%0 Journal Article
%A E. P. Sychugova
%T Spatial approximation of the transport equation on triangle grid by the linear discontinuous finite element method
%J Matematičeskoe modelirovanie
%D 2016
%P 81-94
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_5_a5/
%G ru
%F MM_2016_28_5_a5
E. P. Sychugova. Spatial approximation of the transport equation on triangle grid by the linear discontinuous finite element method. Matematičeskoe modelirovanie, Tome 28 (2016) no. 5, pp. 81-94. http://geodesic.mathdoc.fr/item/MM_2016_28_5_a5/

[1] E. P. Sychugova, “Reshenie uravneniia perenosa metodom konechnykh elementov na nestrukturirovannykh treugolnykh setkakh”, Keldysh Institute preprints, 2013, 085, 24 pp.

[2] D. J. Miller, K. A. Mathews, C. R. Brennan, “Split-Cell Discrete Ordinates Transport on an Unstructured Grid of Triangular Cells”, Transport Theory Statist. Phys., 25:7 (1996), 833–867 | DOI

[3] R. L. Childs, W. A. Rhoades, Theoretical Basis of the Linear Nodal and Linear Characteristic Methods in the TORT Computer Code, ORNL/TM-12246, Oak Ridge National Laboratory, 1993

[4] O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, v. 1, 4th ed., McGraw-Hill Book Company, NY, 1994, 689 pp. | MR

[5] H. Greenspan, C. N. Kelber, D. Okrent (eds.), Computing methods in reactor physics, Gordon and Breach, NY, 1968, 710 pp. | MR | Zbl

[6] O. C. Zienkiewicz, K. Morgan, Finite elements and approximation, Wiley, NY, 1983, 328 pp. | MR | MR | Zbl

[7] I. N. Bronshtein, K. A. Semendiaev, Spravochnik po matematike dlia inzhenerov i uchashchikhsia vtuzov, Nauka, M., 1989, 544 pp.

[8] E. W. Larsen, “Comparison of Spatial Approximation Methods for the $S_N$ Equations in $x,y$ Geometry”, Trans. Am. Nucl. Soc., 33 (1979), 317–318