On construction of images of layered media in inverse scattering problems for the wave equation of acoustics
Matematičeskoe modelirovanie, Tome 28 (2016) no. 5, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-dimensional inverse scattering problems for the wave equation of acoustics on determining the density and acoustic impedance of the medium were studied. A necessary and sufficient condition for the unique solvability of these problems in the form of the energy conservation law is established. It is proved that this condition is that for each pulse oscillation source, located on the boundary of the half-plane, the flow of energy of the scattered waves is less than the energy flux of waves propagating from the boundary of the half-plane. This shows that the inverse scattering problems of dynamic acoustics and geophysics in the case of the law of conservation of energy is possible to determine the elastic-density parameters of the medium. The results allow to considerably extend the class of mathematical models currently used in the solution of multidimensional inverse scattering problems. Several special questions of interpretation for solutions of inverse problems are regarded.
Mots-clés : equations — acoustic, Klein–Gordon, eikonal
Keywords: Gel'fand–Levitan; Galerkin method, density, acoustic impedance.
@article{MM_2016_28_5_a0,
     author = {A. V. Baev},
     title = {On construction of images of layered media in inverse scattering problems for the wave equation of acoustics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_5_a0/}
}
TY  - JOUR
AU  - A. V. Baev
TI  - On construction of images of layered media in inverse scattering problems for the wave equation of acoustics
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 3
EP  - 23
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_5_a0/
LA  - ru
ID  - MM_2016_28_5_a0
ER  - 
%0 Journal Article
%A A. V. Baev
%T On construction of images of layered media in inverse scattering problems for the wave equation of acoustics
%J Matematičeskoe modelirovanie
%D 2016
%P 3-23
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_5_a0/
%G ru
%F MM_2016_28_5_a0
A. V. Baev. On construction of images of layered media in inverse scattering problems for the wave equation of acoustics. Matematičeskoe modelirovanie, Tome 28 (2016) no. 5, pp. 3-23. http://geodesic.mathdoc.fr/item/MM_2016_28_5_a0/

[1] E. V. Nikol'skii, “O reshenii priamykh i obratnykh zadach seismiki dlia odnomernoi neodnorodnoi sredy pri normal'nom padenii ploskoi volny”, Metodika seismorazvedki, Nauka, M., 1965, 190–205 | Zbl

[2] A. S. Blagoveshchenskii, “Ob obratnoi zadzche teorii rasprostraneniia seismicheskikh voln”, Problemy matem. fiziki, Izd-vo Leningr. un-ta, L., 1966, 68–81 | Zbl

[3] B. S. Pariiskii, “Obratnaia zadacha dlia volnovogo uravneniia s vozdeistviem na glubine”, Nekotorye priamye i obratnye zadachi seismiki, Nauka, M., 1969, 25–40 | Zbl

[4] V. G. Romanov, Inverse Problems of Mathematical Physics, VSP, Netherlands, 1984, 253 pp. | MR

[5] M. I. Belishev, A. S. Blagoveshchenskii, Dinamicheskie obratnye zadachi teorii voln, SPbGU, S.-Pb., 1999, 266 pp.

[6] S. I. Kabanikhin, Inverse and Ill-Posed Problems, De Gruyter, 2012, 459 pp. | MR | Zbl

[7] A. L. Bukhgeim, Uravneniia Vol'terra i obratnye zadachi, Nauka, Novosibirsk, 1983, 207 pp. | MR

[8] A. V. Baev, “On the solution of an inverse problem for the wave equation with the help of a regularizing algorithm”, Computational Mathematics and Mathematical Physics, 25:1 (1985), 93–97 | DOI | MR | Zbl

[9] A. S. Blagoveshchenskii, “O lokal'nom metode resheniia nestatsionarnoi obratnoi zadachi dlia neodnorodnoi struny”, Trudy MIAN im. V. A. Steklova, CXV, Nauka, L., 1971, 28–38

[10] A. V. Baev, “A method of solving the inverse scattering problem for the wave equation”, Computational Mathematics and Mathematical Physics, 28:1 (1988), 15–21 | DOI | MR | Zbl

[11] A. V. Baev, “On local solvability of inverse dissipative scattering problems”, JIIPP, 9:4 (2001), 227–247 | MR

[12] A. V. Baev, “On Local Solvability of Inverse Scattering Problems for the Klein–Gordon Equation and the Dirac System”, Math. Notes, 96:2 (2014), 286–289 | DOI | DOI | MR | Zbl

[13] A. L. Bukhgeim, Vvedenie v teoriiu obratnykh zadach, Nauka. Sib. otdel., Novosibirsk, 1988, 184 pp.

[14] A. V. Baev, S. N. Bushkov, “Chislennoe reshenie obratnoi zadachi dlia volnovogo uravneniia metodom reguliarizovannogo obrashcheniia raznostnoi skhemy”, Vestnik Mosk. un-ta, ser. 15, 1986, no. 4, 52–54

[15] A. V. Baev, N. V. Kutsenko, “Solving the Inverse Generalized Problem of Vertical Seismic Profiling”, Computational Mathematics and Modeling, 15:1 (2004), 1–18 | DOI | MR

[16] A. V. Baev, N. V. Kutsenko, “Identification of a Dissipation Coefficient by a Variational Method”, Computational Mathematics and Mathematical Physics, 46:10 (2006), 1796–1807 | DOI | MR

[17] M. I. Belishev, A. P. Kachalov, “Metody teorii granichnogo upravleniia v obratnoi spektral'noi zadache dlia neodnorodnoi struny”, Zapiski nauch. sem. LOMI, 179, no. 19, L., 1989, 14–22

[18] M. I. Belishev, T. L. Sheronova, “Metody teorii granichnogo upravleniia v nestatsionarnoi obratnoi zadache dlia neodnorodnoi struny”, Zapiski nauch. sem. LOMI, 186, no. 20, L., 1990, 37–50

[19] S. I. Kabanikhin, Proektsionno-raznostnye metody opredeleniia koeffitsientov giperbolicheskikh uravnenii, Nauka. Sib. otdel., Novosibirsk, 1988, 165 pp. | MR

[20] S. I. Kabanikhin, M. A. Shishlenin, “Boundary control and Gel'fand–Levitan–Krein methods in inverse acoustic problem”, JIIPP, 12:2 (2004), 125–144 | DOI | MR | Zbl

[21] S. I. Kabanikhin, M. A. Shishlenin, “Numerical algorithm for two-dimensional inverse acoustic problem based on Gel'fand–Levitan–Krein equation”, JIIPP, 18:9 (2011), 979–995 | MR

[22] R. Courant, D. Hilbert, Methods of Mathematical Physics, v. 2, Partial Differential Equations, Wiley, 1966, 811 pp. | MR

[23] A. V. Baev, “On t-Local Solvability of Inverse Scattering Problems in Two Dimensional Layered Media”, Computational Mathematics and Mathematical Physics, 55:6 (2015), 1033–1050 | DOI | MR | MR | Zbl

[24] V. L. Trofimov, F. F. Khaziev, S. A. Shkol'nik, “Sovershenstvovanie metodiki prognozirovaniia geologicheskikh pokazatelei metodom vysokorazreshaiushchei seismiki”, Ekspozitsiia Neft' Gas, 2014, no. 6, 13–19 | MR

[25] V. L. Trofimov, V. A. Milashin, F. F. Khaziev, D. I. Chernikov, A. A. Kachkin, A. B. Timonin, “Prediction of geological features on seismic data of high resolution”, Seismic technology, 2009, no. 4, 49–60 | MR

[26] V. L. Trofimov, V. A. Milashin, F. F. Khaziev, D. I. Chernikov, A. A. Kachkin, A. B. Timonin, “Special processing and interpretation of seismic data in complex geological conditions by high-resolution seismic”, Seismic technology, 2009, no. 3, 36–50 | MR