Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_5_a0, author = {A. V. Baev}, title = {On construction of images of layered media in inverse scattering problems for the wave equation of acoustics}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--23}, publisher = {mathdoc}, volume = {28}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_5_a0/} }
TY - JOUR AU - A. V. Baev TI - On construction of images of layered media in inverse scattering problems for the wave equation of acoustics JO - Matematičeskoe modelirovanie PY - 2016 SP - 3 EP - 23 VL - 28 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_5_a0/ LA - ru ID - MM_2016_28_5_a0 ER -
A. V. Baev. On construction of images of layered media in inverse scattering problems for the wave equation of acoustics. Matematičeskoe modelirovanie, Tome 28 (2016) no. 5, pp. 3-23. http://geodesic.mathdoc.fr/item/MM_2016_28_5_a0/
[1] E. V. Nikol'skii, “O reshenii priamykh i obratnykh zadach seismiki dlia odnomernoi neodnorodnoi sredy pri normal'nom padenii ploskoi volny”, Metodika seismorazvedki, Nauka, M., 1965, 190–205 | Zbl
[2] A. S. Blagoveshchenskii, “Ob obratnoi zadzche teorii rasprostraneniia seismicheskikh voln”, Problemy matem. fiziki, Izd-vo Leningr. un-ta, L., 1966, 68–81 | Zbl
[3] B. S. Pariiskii, “Obratnaia zadacha dlia volnovogo uravneniia s vozdeistviem na glubine”, Nekotorye priamye i obratnye zadachi seismiki, Nauka, M., 1969, 25–40 | Zbl
[4] V. G. Romanov, Inverse Problems of Mathematical Physics, VSP, Netherlands, 1984, 253 pp. | MR
[5] M. I. Belishev, A. S. Blagoveshchenskii, Dinamicheskie obratnye zadachi teorii voln, SPbGU, S.-Pb., 1999, 266 pp.
[6] S. I. Kabanikhin, Inverse and Ill-Posed Problems, De Gruyter, 2012, 459 pp. | MR | Zbl
[7] A. L. Bukhgeim, Uravneniia Vol'terra i obratnye zadachi, Nauka, Novosibirsk, 1983, 207 pp. | MR
[8] A. V. Baev, “On the solution of an inverse problem for the wave equation with the help of a regularizing algorithm”, Computational Mathematics and Mathematical Physics, 25:1 (1985), 93–97 | DOI | MR | Zbl
[9] A. S. Blagoveshchenskii, “O lokal'nom metode resheniia nestatsionarnoi obratnoi zadachi dlia neodnorodnoi struny”, Trudy MIAN im. V. A. Steklova, CXV, Nauka, L., 1971, 28–38
[10] A. V. Baev, “A method of solving the inverse scattering problem for the wave equation”, Computational Mathematics and Mathematical Physics, 28:1 (1988), 15–21 | DOI | MR | Zbl
[11] A. V. Baev, “On local solvability of inverse dissipative scattering problems”, JIIPP, 9:4 (2001), 227–247 | MR
[12] A. V. Baev, “On Local Solvability of Inverse Scattering Problems for the Klein–Gordon Equation and the Dirac System”, Math. Notes, 96:2 (2014), 286–289 | DOI | DOI | MR | Zbl
[13] A. L. Bukhgeim, Vvedenie v teoriiu obratnykh zadach, Nauka. Sib. otdel., Novosibirsk, 1988, 184 pp.
[14] A. V. Baev, S. N. Bushkov, “Chislennoe reshenie obratnoi zadachi dlia volnovogo uravneniia metodom reguliarizovannogo obrashcheniia raznostnoi skhemy”, Vestnik Mosk. un-ta, ser. 15, 1986, no. 4, 52–54
[15] A. V. Baev, N. V. Kutsenko, “Solving the Inverse Generalized Problem of Vertical Seismic Profiling”, Computational Mathematics and Modeling, 15:1 (2004), 1–18 | DOI | MR
[16] A. V. Baev, N. V. Kutsenko, “Identification of a Dissipation Coefficient by a Variational Method”, Computational Mathematics and Mathematical Physics, 46:10 (2006), 1796–1807 | DOI | MR
[17] M. I. Belishev, A. P. Kachalov, “Metody teorii granichnogo upravleniia v obratnoi spektral'noi zadache dlia neodnorodnoi struny”, Zapiski nauch. sem. LOMI, 179, no. 19, L., 1989, 14–22
[18] M. I. Belishev, T. L. Sheronova, “Metody teorii granichnogo upravleniia v nestatsionarnoi obratnoi zadache dlia neodnorodnoi struny”, Zapiski nauch. sem. LOMI, 186, no. 20, L., 1990, 37–50
[19] S. I. Kabanikhin, Proektsionno-raznostnye metody opredeleniia koeffitsientov giperbolicheskikh uravnenii, Nauka. Sib. otdel., Novosibirsk, 1988, 165 pp. | MR
[20] S. I. Kabanikhin, M. A. Shishlenin, “Boundary control and Gel'fand–Levitan–Krein methods in inverse acoustic problem”, JIIPP, 12:2 (2004), 125–144 | DOI | MR | Zbl
[21] S. I. Kabanikhin, M. A. Shishlenin, “Numerical algorithm for two-dimensional inverse acoustic problem based on Gel'fand–Levitan–Krein equation”, JIIPP, 18:9 (2011), 979–995 | MR
[22] R. Courant, D. Hilbert, Methods of Mathematical Physics, v. 2, Partial Differential Equations, Wiley, 1966, 811 pp. | MR
[23] A. V. Baev, “On t-Local Solvability of Inverse Scattering Problems in Two Dimensional Layered Media”, Computational Mathematics and Mathematical Physics, 55:6 (2015), 1033–1050 | DOI | MR | MR | Zbl
[24] V. L. Trofimov, F. F. Khaziev, S. A. Shkol'nik, “Sovershenstvovanie metodiki prognozirovaniia geologicheskikh pokazatelei metodom vysokorazreshaiushchei seismiki”, Ekspozitsiia Neft' Gas, 2014, no. 6, 13–19 | MR
[25] V. L. Trofimov, V. A. Milashin, F. F. Khaziev, D. I. Chernikov, A. A. Kachkin, A. B. Timonin, “Prediction of geological features on seismic data of high resolution”, Seismic technology, 2009, no. 4, 49–60 | MR
[26] V. L. Trofimov, V. A. Milashin, F. F. Khaziev, D. I. Chernikov, A. A. Kachkin, A. B. Timonin, “Special processing and interpretation of seismic data in complex geological conditions by high-resolution seismic”, Seismic technology, 2009, no. 3, 36–50 | MR