Numerical modeling of the cellular necrosis front localization effect during cutaneous cryosurgery
Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 125-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of planning and optimization of the tumor tissue destruction during cutaneous cryosurgery operations. The method of the additional heating elements mounting is proposed as an approach to control the cellular necrosis front propagation. Mathematical modeling and Pareto optimization of calculable functions is used for the effectiveness improvement of the proposed method. An explicit scheme based on the finite volume approximation of Pennes bioheat transfer model is applied together with the enthalpy method for blurred phase change computations. The flux relaxation method is used for the stability improvement of scheme.
Keywords: cryosurgery, Pennes model, finite volume method, flux relaxation method.
Mots-clés : Pareto solution
@article{MM_2016_28_4_a9,
     author = {N. A. Kudryashov and K. E. Shilnikov},
     title = {Numerical modeling of the cellular necrosis front localization effect during cutaneous cryosurgery},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {125--136},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a9/}
}
TY  - JOUR
AU  - N. A. Kudryashov
AU  - K. E. Shilnikov
TI  - Numerical modeling of the cellular necrosis front localization effect during cutaneous cryosurgery
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 125
EP  - 136
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_4_a9/
LA  - ru
ID  - MM_2016_28_4_a9
ER  - 
%0 Journal Article
%A N. A. Kudryashov
%A K. E. Shilnikov
%T Numerical modeling of the cellular necrosis front localization effect during cutaneous cryosurgery
%J Matematičeskoe modelirovanie
%D 2016
%P 125-136
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_4_a9/
%G ru
%F MM_2016_28_4_a9
N. A. Kudryashov; K. E. Shilnikov. Numerical modeling of the cellular necrosis front localization effect during cutaneous cryosurgery. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 125-136. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a9/

[1] T. E. Cooper, W. K. Petrovic, “An Experimental Investigation of the Temperature Field Produced by a Cryosurgical Cannula”, Journal of Heat Transfer, 96 (1974), 415–420 | DOI

[2] I. S. Cooper, “Cryobiology as viewed by the surgeon”, Cryobiology, 1964, no. 1, 44–54 | DOI

[3] D. I. Tsyganov, Kriomeditsina, protsessy i apparaty, Sains-press, M., 2011

[4] D. J. Smith, W. M. Fahssi, D. J. Swanlund, J. C. Bischof, “A parametric study of freezing injury in AT-1 rat prostate tumor cells”, Cryobiology, 39 (1994), 13–28 | DOI

[5] P. I. Agapov, O. M. Belotserkovskii, I. B. Petrov, “Numerical simulation of the consequences of a mechanical action on a human brain under a skull injury”, Computational Mathematics and Mathematical Physics, 46:9 (2006), 1629–1638 | DOI | MR

[6] A. V. Kolobov, V. V. Gubernov, A. A. Polezhaev, “Volny fisherovskogo tipa v modeli rosta invazivnoi opuholi”, Matem. Mod., 19:6 (2007), 31–42 | MR | Zbl

[7] S. S. Simakov, A. S. Kholodov, “Computational study of oxygen concentration in human blood under low frequency disturbances”, Mathematical Models and Computer Simulations, 1:2 (2009), 283–295 | DOI | MR | Zbl

[8] V. N. Buravtsev, A. I. Lobanov, A. V. Ukrainets, “Mathematical model of platelet thrombus growth”, Mathematical Models and Computer Simulations, 2:1 (2010), 55–62 | DOI | Zbl

[9] A. Ia. Bunicheva, M. A. Meniailova, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, “Studying the influence of gravitational overloads on the parameters of blood flow in vessels of greater circulation”, Mathematical Models and Computer Simulations, 5:1 (2013), 81–91 | DOI | MR

[10] A. P. Favorskii, M. A. Tygliyan, N. N. Tyurina, A. M. Galanina, V. A. Isakov, “Computational modeling of the propagation of hemodynamic impulses”, Mathematical Models and Computer Simulations, 2:4 (2010), 470–481 | DOI | MR | MR

[11] M. V. Abakumov, I. V. Ashtnetkov, N. B. Esikova, V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorsky, A. B. Khrulenko, “Metodika matematicheskogo modelirovaniia serdechno-sosudistoi sistemy”, Matem. Mod., 12:2 (2000), 106–117 | Zbl

[12] Y. V. Vassilevski, A. A. Danilov, D. V. Nikolaev, S. G. Rudnev, V. Y. Salamatova, A. V. Smirnov, “Konechno-elementnyi analiz zadach bioimpedansnoi diagnostiki”, Zh. Vych. Mat. Matem. Fiz., 52:4 (2012), 733–745 | Zbl

[13] M. R. Rossi, D. Tanaka, K. Shimada, Y. Rabin, “An Efficient Numerical Technique for Bioheat Simulations and its Application to Computerized Cryosurgery Planing”, Comput. Methods Programs Biomed., 85:1 (2007), 41–50 | DOI

[14] R. Wan, Z. Liu, K. Muldrew, J. Rewcastle, “A Finite Element Model for Ice Ball Evolution in a Multi-probe Cryosurgery”, Computer Methods in Biomechanics and Biomedical Engineering, 6:3 (2003), 197–208 | DOI

[15] N. A. Kudryashov, K. E. Shilnikov, “O raschete protsessov kriovozdeistviia na oblast tela s uchetom vliianiia konvektsii krovi”, Vestnik Natsionalnogo Issledovatelskogo Iadernogo Universiteta “MIFI”, 3:3 (2014), 329–335 | Zbl

[16] S. H. Deljou, S. Haghipour, A. Bayat, “Intelligent Planning for Cryoprobe Placement during Cryosurgery”, Life Science Journal, 10:3, special (2013), 552–557

[17] M. R. Rossi, D. Tanaka, K. Shimada, Y. Rabin, “Computerized Planning of Prostate Cryosurgery Using Variable Cryoprobe Insertion Depth”, Cryobiology, 60:1 (2010), 71–79 | DOI

[18] N. A. Kudryashov, K. E. Shilnikov, “Numerical Simulation of Cryosurgeries and Optimization of Probe Placement”, Computational Mathematics and Mathematical Physics, 55:9 (2015), 1567–1578 | DOI | DOI | MR | Zbl

[19] W. Stadler, “A Survey of Multicriteria Optimization, or the Vector Maximum Problem”, Journal of Optimization Theory and Applications, 29 (1979), 152 | DOI | MR

[20] W. Stadler, “Applications of Multicriteria Optimization in Engineering and the Sciences (A Survey)”, Multiple Criteria Decision Making Past Decade and Future Trends, ed. M. Zeleny, JAI Press, Greenwich, Connecticut, 1984

[21] R. E. Steuer, Multicriteria Optimization: Theory, Computation and Application, John Wiley and Sons (WIE), New York, 1985 | MR

[22] F. Sun, G.-X. Wang, K. M. Kelly, G. Aguilar, “Numerical Analysis of Tissue Freezing in Cutaneous Cryosurgery Using Liquid Nitrogen Spray”, 5th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion (Xi'an, China, 3–6 July 2005)

[23] H. H. Pennes, “Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm”, Journal of Applied Physiology, 1:2 (1948), 93–122

[24] A. A. Samarskii, B. D. Moiseyenko, “An economic continuous calculation scheme for the stefan multidimensional problem”, USSR Computational Mathematics and Mathematical Physics, 5:5 (1965), 43–58 | DOI | MR

[25] E. V. Shilnikov, “Modelirovanie techenii viazkogo gaza na osnove KGD sistemy uravnenii na neortogonalnyh indeksnyh setkah”, Keldysh Institute preprints, 2014, 033, 20 pp.

[26] B. N. Chetverushkin, E. V. Shilnikov, A. A. Davydov, “Numerical Simulation of Continuous Media Problems on Hybrid Computer Systems”, Advances in Engineering Software, 60–61, Elsevier, Amsterdam, 2013, 42–47 | DOI

[27] B. N. Chetverushkin, E. V. Shilnikov, “Flux Relaxation as an Approach to the Stability Improvement for Explicit Finite Difference Schemes”, CD proceedings of the II International conference on Engineering Optimization, EngOpt-2010 (Lisbon, Portugal, 2010)

[28] E. E. Myshetskaia, V. F. Tishkin, “Otsenki vliianiia giperbolizatsii dlia uravneniia teploprovodnosti”, Keldysh Institute preprints, 2015, 016, 12 pp. | Zbl

[29] B. N. Chetverushkin, “Resolution limits of continuous media mode and their mathematical formulations”, Mathematical Models and Computer Simulations, 5:3 (2013), 266–279 | DOI | MR | MR | Zbl