Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_4_a8, author = {A. V. Gasnikov and E. V. Gasnikova and M. A. Mendel and K. V. Chepurchenko}, title = {Evolutionary interpretations of entropy model for correspondence matrix calculation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {111--124}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a8/} }
TY - JOUR AU - A. V. Gasnikov AU - E. V. Gasnikova AU - M. A. Mendel AU - K. V. Chepurchenko TI - Evolutionary interpretations of entropy model for correspondence matrix calculation JO - Matematičeskoe modelirovanie PY - 2016 SP - 111 EP - 124 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_4_a8/ LA - ru ID - MM_2016_28_4_a8 ER -
%0 Journal Article %A A. V. Gasnikov %A E. V. Gasnikova %A M. A. Mendel %A K. V. Chepurchenko %T Evolutionary interpretations of entropy model for correspondence matrix calculation %J Matematičeskoe modelirovanie %D 2016 %P 111-124 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_4_a8/ %G ru %F MM_2016_28_4_a8
A. V. Gasnikov; E. V. Gasnikova; M. A. Mendel; K. V. Chepurchenko. Evolutionary interpretations of entropy model for correspondence matrix calculation. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 111-124. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a8/
[1] A. G. Wilson, Entropy in urban and regional modelling, Centre for Environmental Studies, L., 1969
[2] N. S. Ethier, T. G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley Sons Inc., NY., 1986, 593 pp. | DOI | MR | Zbl
[3] V. A. Malyshev, S. A. Pirogov, “Reversibility and irreversibility in stochastic chemical kinetics”, Russian Mathematical Surveys, 63:1 (2008), 1–34 | DOI | MR | Zbl | Zbl
[4] Ya. G. Batishcheva, V. V. Vedenyapin, “II-y zakon termodinamiki dlya himicheskoy kinetiki”, Matem. modelirovanie, 17:8 (2005), 106–110 | MR | Zbl
[5] A. V. Gasnikov, E. V. Gasnikova, “Ob entropiyno-podobnyh funkcionalah, voznikayuschih v stohasticheskoy himicheskoy kinetike pri koncentracii invariantnoy mery ivk achestve funkciy Lyapunova dinamiki kvazisrednih”, Matem. zametki, 94:6 (2013), 816–824 | DOI
[6] S. Boucheron, G. Lugoshi, P. Massart, Concentration inequalities: A nonasymptotic theory of independence, Oxford University Press, Oxford, 2013, 480 pp. | MR | Zbl
[7] I. N. Sanov, “O veroyatnosti bolshih otkloneniy sluchaynyh velichin”, Matem. sb., 42(84):1 (1957), 11–44 | MR | Zbl
[8] S.-C. Fang, J. R. Rajasekera, H.-S. J. Tsao, Entropy optimization and mathematical programming, Kluwer's International Series, Kluwer, 1997 | MR | Zbl
[9] C. V. Gardiner, Stochastic methods. A Handbook for the Natural and Social Sciences, Springer, 2009 | MR | Zbl
[10] W. Weidlich, Sociodynamics: a System Approach to Mathematical Modelling in the Social Sciences, Harwood Academic Publishers, Amsterdam, 2000 | MR
[11] W. Sandholm, Population games and Evolutionary dynamics. Economic Learning and Social Evolution, MIT Press, Cambridge, 2010 | MR
[12] A. V. Gasnikov, Vvedenie v matematicheskoe modelirovanie transportnyh potokov, MCNMO, M., 2013, 427 pp.
[13] A. V. Gasnikov, Yu. V. Dorn, Yu. E. Nesterov, S. V. Shpirko, “O trehstadiynoy versii modeli stacionarnoy dinamiki transportnyh potokov”, Matematicheskoe modelir., 26:6 (2014), 34–70 | Zbl
[14] A. V. Gasnikov, E. V. Gasnikova, Yu. E. Nesterov, A. V. Chernov, “Ob effektivnyh chislennyh metodah resheniya zadach entropiyno-lineynogo programmirovaniya v sluchae razrezhennyh matric”, ZhVMiMF, 56:4 (2016), 17–28
[15] A. A. Borovkov, Ergodichnost i ustoychivost sluchaynyh processov, URSS, M., 1999, 440 pp. | MR
[16] D. A. Levin, Y. Peres, E. L. Wilmer, Markov chain and mixing times, AMS, Chicago, 2009, 387 pp. | MR
[17] A. V. Gasnikov, D. Yu. Dmitriev, “On efficient randomized algorithms for finding the PageRank vector”, Computational Mathematics and Mathematical Physics, 55:3 (2015), 349–365 | DOI | MR | Zbl
[18] J. D. Ortúzar, L. G. Willumsen, Modelling transport, John Wiley Sons Inc., NY, 2011
[19] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Vypuklyy analiz i ego prilozheniya, URSS, M., 2003, 176 pp.
[20] M. Sion, “On general minimax theorem”, Pac. J. Math., 8 (1958), 171–176 | DOI | MR | Zbl
[21] S. Yun, A. Sen, “Computation of maximum likelihood estimates of gravity model parameters”, Journal of Regional Science, 34:2 (1994), 199–216 | DOI
[22] A. Sen, “Maximum likelihood estimation of gravity model parameters”, Journal of Regional Science, 26:3 (1986), 461–474 | DOI
[23] V. Spokoiny, “Parametric estimation. Finite sample theory”, The Annals of Statistics, 40:6 (2012), 2877–2909 | DOI | MR | Zbl
[24] Y. Sheffi, Urban transportation networks: Equilibrium analysis with mathematical programming methods, Prentice-Hall Inc., Englewood Cliffs, N.J., 1985
[25] M. Patriksson, The traffic assignment problem. Models and methods, VSP, Utrecht, 1994, 399 pp.
[26] S. P. Andersen, A. de Palma, J.-F. Thisse, Discrete choice theory of product differentiation, MIT Press, Cambridge, 1992, 448 pp. | MR
[27] M. Cuturi, G. Peyre, A. Rolet, A smoothed dual approach for variational wasserstein problems, 2015, 22 pp., arXiv: 1503.02533
[28] H. Bar-Gera, Origin-based algorithms for transportation network modeling, Univ. of Illinois at Chicago, Chicago, 1999, 125 pp.
[29] R. K. Ahuja, T. L. Magnati, J. B. Orlin, Network flows: Theory, algorithms and applications, Prentice Hall, NJ, 1993, 850 pp. | MR | Zbl
[30] Y. Nesterov, A. de Palma, “Stationary Dynamic Solutions in Congested Transportation Networks: Summary and Perspectives”, Networks Spatial Econ., 3:3 (2003), 371–395 | DOI | MR