Evolutionary interpretations of entropy model for correspondence matrix calculation
Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 111-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work two ways of evolutionary interpretation of entropy model for correspondence matrix calculation are proposed. Both approaches based on the stochastic chemical kinetic evolution under the detailed balance conditions. The first approach is based on the binary reactions, and the second one is based on the population games theory. Both approaches allow one to understand better possible physical interpretations of the classic model and to obtain the answers for some open questions in neighborhoods' branches. For example, one can propose a selection rule to the unique equilibrium among the set of equilibriums.
Keywords: population game theory, correspondence matrix calculation model, traffic assignment model, entropy maximum principle, entropy-linear programming, equilibrium of macro system, detailed balance condition.
@article{MM_2016_28_4_a8,
     author = {A. V. Gasnikov and E. V. Gasnikova and M. A. Mendel and K. V. Chepurchenko},
     title = {Evolutionary interpretations of entropy model for correspondence matrix calculation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--124},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a8/}
}
TY  - JOUR
AU  - A. V. Gasnikov
AU  - E. V. Gasnikova
AU  - M. A. Mendel
AU  - K. V. Chepurchenko
TI  - Evolutionary interpretations of entropy model for correspondence matrix calculation
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 111
EP  - 124
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_4_a8/
LA  - ru
ID  - MM_2016_28_4_a8
ER  - 
%0 Journal Article
%A A. V. Gasnikov
%A E. V. Gasnikova
%A M. A. Mendel
%A K. V. Chepurchenko
%T Evolutionary interpretations of entropy model for correspondence matrix calculation
%J Matematičeskoe modelirovanie
%D 2016
%P 111-124
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_4_a8/
%G ru
%F MM_2016_28_4_a8
A. V. Gasnikov; E. V. Gasnikova; M. A. Mendel; K. V. Chepurchenko. Evolutionary interpretations of entropy model for correspondence matrix calculation. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 111-124. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a8/

[1] A. G. Wilson, Entropy in urban and regional modelling, Centre for Environmental Studies, L., 1969

[2] N. S. Ethier, T. G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley Sons Inc., NY., 1986, 593 pp. | DOI | MR | Zbl

[3] V. A. Malyshev, S. A. Pirogov, “Reversibility and irreversibility in stochastic chemical kinetics”, Russian Mathematical Surveys, 63:1 (2008), 1–34 | DOI | MR | Zbl | Zbl

[4] Ya. G. Batishcheva, V. V. Vedenyapin, “II-y zakon termodinamiki dlya himicheskoy kinetiki”, Matem. modelirovanie, 17:8 (2005), 106–110 | MR | Zbl

[5] A. V. Gasnikov, E. V. Gasnikova, “Ob entropiyno-podobnyh funkcionalah, voznikayuschih v stohasticheskoy himicheskoy kinetike pri koncentracii invariantnoy mery ivk achestve funkciy Lyapunova dinamiki kvazisrednih”, Matem. zametki, 94:6 (2013), 816–824 | DOI

[6] S. Boucheron, G. Lugoshi, P. Massart, Concentration inequalities: A nonasymptotic theory of independence, Oxford University Press, Oxford, 2013, 480 pp. | MR | Zbl

[7] I. N. Sanov, “O veroyatnosti bolshih otkloneniy sluchaynyh velichin”, Matem. sb., 42(84):1 (1957), 11–44 | MR | Zbl

[8] S.-C. Fang, J. R. Rajasekera, H.-S. J. Tsao, Entropy optimization and mathematical programming, Kluwer's International Series, Kluwer, 1997 | MR | Zbl

[9] C. V. Gardiner, Stochastic methods. A Handbook for the Natural and Social Sciences, Springer, 2009 | MR | Zbl

[10] W. Weidlich, Sociodynamics: a System Approach to Mathematical Modelling in the Social Sciences, Harwood Academic Publishers, Amsterdam, 2000 | MR

[11] W. Sandholm, Population games and Evolutionary dynamics. Economic Learning and Social Evolution, MIT Press, Cambridge, 2010 | MR

[12] A. V. Gasnikov, Vvedenie v matematicheskoe modelirovanie transportnyh potokov, MCNMO, M., 2013, 427 pp.

[13] A. V. Gasnikov, Yu. V. Dorn, Yu. E. Nesterov, S. V. Shpirko, “O trehstadiynoy versii modeli stacionarnoy dinamiki transportnyh potokov”, Matematicheskoe modelir., 26:6 (2014), 34–70 | Zbl

[14] A. V. Gasnikov, E. V. Gasnikova, Yu. E. Nesterov, A. V. Chernov, “Ob effektivnyh chislennyh metodah resheniya zadach entropiyno-lineynogo programmirovaniya v sluchae razrezhennyh matric”, ZhVMiMF, 56:4 (2016), 17–28

[15] A. A. Borovkov, Ergodichnost i ustoychivost sluchaynyh processov, URSS, M., 1999, 440 pp. | MR

[16] D. A. Levin, Y. Peres, E. L. Wilmer, Markov chain and mixing times, AMS, Chicago, 2009, 387 pp. | MR

[17] A. V. Gasnikov, D. Yu. Dmitriev, “On efficient randomized algorithms for finding the PageRank vector”, Computational Mathematics and Mathematical Physics, 55:3 (2015), 349–365 | DOI | MR | Zbl

[18] J. D. Ortúzar, L. G. Willumsen, Modelling transport, John Wiley Sons Inc., NY, 2011

[19] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Vypuklyy analiz i ego prilozheniya, URSS, M., 2003, 176 pp.

[20] M. Sion, “On general minimax theorem”, Pac. J. Math., 8 (1958), 171–176 | DOI | MR | Zbl

[21] S. Yun, A. Sen, “Computation of maximum likelihood estimates of gravity model parameters”, Journal of Regional Science, 34:2 (1994), 199–216 | DOI

[22] A. Sen, “Maximum likelihood estimation of gravity model parameters”, Journal of Regional Science, 26:3 (1986), 461–474 | DOI

[23] V. Spokoiny, “Parametric estimation. Finite sample theory”, The Annals of Statistics, 40:6 (2012), 2877–2909 | DOI | MR | Zbl

[24] Y. Sheffi, Urban transportation networks: Equilibrium analysis with mathematical programming methods, Prentice-Hall Inc., Englewood Cliffs, N.J., 1985

[25] M. Patriksson, The traffic assignment problem. Models and methods, VSP, Utrecht, 1994, 399 pp.

[26] S. P. Andersen, A. de Palma, J.-F. Thisse, Discrete choice theory of product differentiation, MIT Press, Cambridge, 1992, 448 pp. | MR

[27] M. Cuturi, G. Peyre, A. Rolet, A smoothed dual approach for variational wasserstein problems, 2015, 22 pp., arXiv: 1503.02533

[28] H. Bar-Gera, Origin-based algorithms for transportation network modeling, Univ. of Illinois at Chicago, Chicago, 1999, 125 pp.

[29] R. K. Ahuja, T. L. Magnati, J. B. Orlin, Network flows: Theory, algorithms and applications, Prentice Hall, NJ, 1993, 850 pp. | MR | Zbl

[30] Y. Nesterov, A. de Palma, “Stationary Dynamic Solutions in Congested Transportation Networks: Summary and Perspectives”, Networks Spatial Econ., 3:3 (2003), 371–395 | DOI | MR