On technology of large-scale CFD simulations
Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 77-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a technology of large-scale CFD simulations on supercomputers using finite-volume or finite-difference methods. Problems under consideration include optimal choice of domain geometry, minimization of disk space usage, choice of optimal multilevel parallel model configuration, etc. Attention is paid on the efficiency of computations on supercomputers taking into account queue system waiting time and limitations; on the reliability of computations, avoiding crashes of a simulation, automatic correction and optimization of simulation parameters, etc. Ways to improve quality of averaged fields and spectra data are presented.
Mots-clés : CFD
Keywords: parallel computing, turbulent flows, aeroacoustics, MPI, OpenMP, OpenCL.
@article{MM_2016_28_4_a5,
     author = {A. Gorobets},
     title = {On technology of large-scale {CFD} simulations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--91},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a5/}
}
TY  - JOUR
AU  - A. Gorobets
TI  - On technology of large-scale CFD simulations
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 77
EP  - 91
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_4_a5/
LA  - ru
ID  - MM_2016_28_4_a5
ER  - 
%0 Journal Article
%A A. Gorobets
%T On technology of large-scale CFD simulations
%J Matematičeskoe modelirovanie
%D 2016
%P 77-91
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_4_a5/
%G ru
%F MM_2016_28_4_a5
A. Gorobets. On technology of large-scale CFD simulations. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 77-91. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a5/

[1] K. N. Volkov, V. N. Yemel'yanov, Modelirovaniye krupnykh vikhrey v raschetakh turbulentnykh techeniy, Fizmatlit, M., 2008

[2] M. L. Shur, P. R. Spalart, M. Kh. Strelets, A. K. Travin, “A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities”, Int. J. of Heat and Fluid Flow, 29:6 (2008), 1638–1649 | DOI

[3] I. E. Kaporin, O. Yu. Milyukova, “Optimizatsiya faktorizovannykh predobuslovlivaniy metoda sopryazhennykh gradiyentov dlya resheniya sistem lineynykh algebraicheskikh uravneniy s simmetrichnoy polozhitel'no opredelennoy matritsey”, Preprint IPM, 2013, 013, 17 pp. | Zbl

[4] V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “Parallel multigrid method for solving elliptic equations”, Mathematical Models and Computer Simulations, 6:4 (2014), 425–434 | DOI | MR | Zbl

[5] A. H. Baker, R. D. Falgout, Tz. V. Kolev, U. M. Yang, “Multigrid smoothers for ultraparallel computing”, SIAM Journal on Scientific Computing, 33:5 (2011), 2864–2887 | DOI | MR | Zbl

[6] I. V. Abalakin, P. A. Bakhvalov, T. K. Kozubskaya, “Edge-based reconstruction schemes for prediction of near field flow region in complex aeroacoustic problems”, Int. J. of Aeroacoustics, 13:3–4 (2014), 207–234

[7] P. A. Bakhvalov, “Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems”, Mathematical Models and Computer Simulations, 6:2 (2014), 192–202 | DOI | MR

[8] J. E. Jaramillo, F. X. Trias, A. Gorobets, C. D. Perez-Segarra, A. Oliva, “DNS and RANS modelling of a Turbulent Plane Impinging Jet”, Int. J. of Heat and Mass Transfer, 55:4 (2012), 789–801 | DOI | Zbl

[9] E. Yilmaz, S. Aliabadi, “Surface conformed linear mesh and data subdivision technique for largescale flow simulation and visualization in Variable Intensity Computational Environment”, Computers Fluids, 80 (2013), 388–402 | DOI

[10] F. X. Trias, A. Gorobets, M. Soria, A. Oliva, “Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Ra-number up to 1011 - Part I: Numerical methods and time-averaged flow”, International Journal of Heat and Mass Transfer, 53 (2010), 665–673 | DOI | Zbl

[11] P. D. Welch, “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms”, IEEE Trans. Audio Electroacoust., AU-15 (1967), 70–73 | DOI

[12] G. Heinzel, A. Rudiger, R. Schilling, Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows, , 2002 http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

[13] J. E. Ffowcs Williams, D. L. Hawkings, “Sound generated by turbulence and surfaces in unsteady motion”, Philosophical Transactions of the Royal Society, A264:1151 (1969), 321–342 | Zbl

[14] P. A. Bakhvalov, T. K. Kozubskaya, E. D. Kornilina, A. V. Morozov, M. V. Yacobovskii, “Technology of predicting acoustic turbulence in the far-field flow”, Mathematical Models and Computer Simulations, 4:3 (2012), 363–373 | DOI | MR | MR

[15] P. R. Spalart, M. L. Shur, “Variants of the Ffowcs Williams–Hawkings equation and their coupling with simulations of hot jets”, International Journal of Aeroacoustics, 8:5 (2009), 477–492 | DOI

[16] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben', T. K. Kozubskaya, “Parallel'nyy programmnyy kompleks NOISETTE dlya krupnomasshtabnykh raschetov zadach aerodinamiki i aeroakustiki”, Vychislitel'nyye metody i programmirovaniye, 13 (2012), 110–125 | MR

[17] F. X. Trias, A. Gorobets, C. D. Perez-Segarra, A. Oliva, “DNS and regularization modeling of a turbulent differentially heated cavity of aspect ratio 5”, Int. J. of Heat and Mass Transfer, 57:1 (2013), 171–182 | DOI

[18] J. E. Jaramillo, F. X. Trias, A. Gorobets, C. D. Perez-Segarra, A. Oliva, “DNS and RANS modelling of a Turbulent Plane Impinging Jet”, Int. J. of Heat and Mass Transfer, 55:4 (2012), 789–801 | DOI | Zbl

[19] H. Zhang, F. X. Trias, A. Gorobets, D. Yang, A. Oliva, Y. Tan, Y. Sheng, “Effect of collisions on the particle behavior in a turbulent square duct flow”, Powder Technology, 269 (2015), 320–336 | DOI

[20] T. Kozubskaya, A. Duben, T. Knacke, F. Thiele, V. Kopiev, M. Zaitsev, Joint experimental and numerical study of gap turbulence interaction, AIAA paper 2013-2214

[21] B. N. Dan'kov, A. P. Duben', T. K. Kozubskaya, “Chislennoye modelirovaniye transzvukovogo turbulentnogo obtekaniya klinovidnogo tela s obratnym ustupom”, Mat. model., 27:10 (2015), 81–95