Plane two bodies problems in Stokes hydronamics
Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 43-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

A plane hydrodynamic problem on interaction of two disks in the field of distant stresses is presented. The exact solutions for two types of remote stresses are obtained by method of series expansion. The equivalent forces and moments creating an analogous disk movement are calculated. Motion in time of particles in a pair related with the lubricating layer effect between them is investigated. These solutions can be used in the averaging suspension problem and in the physical and chemical hydrodynamics. One of number application is related with the proppant mechanics.
Mots-clés : suspension, microstructure, constraint.
Keywords: rheology, pair interaction
@article{MM_2016_28_4_a3,
     author = {A. V. Karakin and M. M. Ramazanov},
     title = {Plane two bodies problems in {Stokes} hydronamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--63},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a3/}
}
TY  - JOUR
AU  - A. V. Karakin
AU  - M. M. Ramazanov
TI  - Plane two bodies problems in Stokes hydronamics
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 43
EP  - 63
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_4_a3/
LA  - ru
ID  - MM_2016_28_4_a3
ER  - 
%0 Journal Article
%A A. V. Karakin
%A M. M. Ramazanov
%T Plane two bodies problems in Stokes hydronamics
%J Matematičeskoe modelirovanie
%D 2016
%P 43-63
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_4_a3/
%G ru
%F MM_2016_28_4_a3
A. V. Karakin; M. M. Ramazanov. Plane two bodies problems in Stokes hydronamics. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 43-63. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a3/

[1] G. B. Jeffry, “On the steady rotation of a solid of revolution of a viscous fluid”, Proc. Lond. Math. Soc., Ser. 2, 14 (1915), 327–338 | DOI

[2] M. Stimson, G. B. Jeffry, “The motion of two sphere through of a viscous fluid”, Proc. Roy. Soc., A111:757 (1926), 110–116 | DOI | Zbl

[3] S. L. Soo, Fluid dynamics of multiphase system, Blaisdell Pub. Co., Waltham, Mass., 1967, 524 pp.

[4] J. Happel, H. Brenner, Low Reynolds number hydrodynamics, Prentice-Hall, 1965, 553 pp. ; т. II, 359 с. | MR

[5] R. I. Nigmatulin, Dinamica mnogofaznykh sred, v. I, II., Nauka, M., 1987

[6] N. I. Muskhelishvili, Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966, 707 pp.

[7] Ia. S. Ufliand, Bipoliarnye koordinaty v teorii uprugosti, Gostekhizdat, M.–L., 1950, 232 pp.

[8] N. A. Sleskin, Dinamika viazkoi neszhimaemoi zhidkosti, Gostekhizdat, M., 1955, 520 pp.

[9] E. Nazockdast, J. F. Morris, “Microstructural theory and the rheology of concentrated colloidal suspensions”, J. Fluid Mech., 713 (2012), 420–452 | DOI | MR | Zbl