Nonlinearity difficulty in numerical solving of superstiff Cauchy problems
Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 16-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lot of schemes has been proposed for solving of stiff Cauchy problems for ordinary differential equations. They are effective on linear and weakly nonlinear systems. The article provides the investigation of behavior of several well-known schemes on strongly nonlinear superstiff problems (including, for example, chemical kinetics problem). Well-known numerical methods are shown to be unreliable for such problems. They require sufficient grid densening in particular critical moments of time though there are no reliable enough procedures to obtain these moments. It has been shown that choosing of time as integration argument leads to difficulty in boundary layer. In case the argument is the integral curve arc length the difficulties occur in transition zone between the boundary layer and the regular solution.
Keywords: differential equations, Cauchy problem, stiffness, nonlinearity, boundary layer.
@article{MM_2016_28_4_a1,
     author = {A. A. Belov and N. N. Kalitkin},
     title = {Nonlinearity difficulty in numerical solving of superstiff {Cauchy} problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--32},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a1/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - N. N. Kalitkin
TI  - Nonlinearity difficulty in numerical solving of superstiff Cauchy problems
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 16
EP  - 32
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_4_a1/
LA  - ru
ID  - MM_2016_28_4_a1
ER  - 
%0 Journal Article
%A A. A. Belov
%A N. N. Kalitkin
%T Nonlinearity difficulty in numerical solving of superstiff Cauchy problems
%J Matematičeskoe modelirovanie
%D 2016
%P 16-32
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_4_a1/
%G ru
%F MM_2016_28_4_a1
A. A. Belov; N. N. Kalitkin. Nonlinearity difficulty in numerical solving of superstiff Cauchy problems. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 16-32. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a1/

[1] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniia sobolevskogo tipa, Fizmatlit, 2007, 736 pp.

[2] Iu. V. Rakitskii, S. M. Ustinov, I. G. Chernorutskii, Chislennye metody resheniia zheskikh sistem, Nauka, M., 1979, 208 pp. | MR

[3] V. I. Shalashilin, E. B. Kuznetsov, Metod prodolzheniia resheniia po parametru i nailuchshaia parametrizaciia, Editorial URSS, M., 1999, 224 pp. | MR

[4] E. Hairer, S. P. Norset, G. Wanner, Solving ordinary differential equations. Nonstiff problems, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1991 | MR

[5] E. Hairer, G. Wanner, Solving ordinary differential equations. Stiff and differential-algebraic problems, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1999

[6] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniia na kvaziravnomernykh setkah, Fizmatlit, M., 2005, 224 pp.

[7] V. Ia. Gol'din, N. N. Kalitkin, “Finding the solutions of constant sign of ordinary differential equations”, USSR Computational Mathematics and Mathematical Physics, 6:1 (1966), 228–230 | DOI | MR

[8] A. A. Belov, N. N. Kalitkin, L. V. Kuzmina, “Modelirovanie khimicheskoi kinetiki v gazakh”, Matematicheskoe Modelirovanie