The inverse algorithm of imitation of radical polymerization by the Monte-Carlo method
Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

A software simulation algorithm of radical polymerization by the Monte Carlo method was designed and implemented. This research aims to develop software for modeling chemical-initiated and thermal-chemical-initiated radical polymerization using the Monte Carlo method with allowance for the Hui–Hamielec gel effect model. The developed software allows with acceptable cost of computer time to simulate the process of classical radical polymerization based on the gel effect. Created program allows calculating the conversion of monomer, change in the molecular weight and molecular weight distribution, monitoring the concentration of intermediates, etc. The advantage of the modeling algorithm is the ease of the calculating units’ inclusion to simulate other reactions, which is extremely important because of the high interest to the non-classical radical polymerization processes (pseudoliving). This program was tested on the asymptotic examples and modeling of polymerization of methyl methacrylate and styrene in a mass. Correctness of the algorithm and software is proved in the simulation of the chemical and thermal initiation, chain propagation, chain transfer to monomer, disproportion and recombination of macro radicals taking into account the gel effect in comparison with the experimental and literature data.
Keywords: Monte-Carlo method, gel effect, methyl methacrylate, bulk radical polymerization.
@article{MM_2016_28_4_a0,
     author = {V. M. Yanborisov and A. A. Sultanova and S. V. Kolesov},
     title = {The inverse algorithm of imitation of radical polymerization by the {Monte-Carlo} method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_4_a0/}
}
TY  - JOUR
AU  - V. M. Yanborisov
AU  - A. A. Sultanova
AU  - S. V. Kolesov
TI  - The inverse algorithm of imitation of radical polymerization by the Monte-Carlo method
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 3
EP  - 15
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_4_a0/
LA  - ru
ID  - MM_2016_28_4_a0
ER  - 
%0 Journal Article
%A V. M. Yanborisov
%A A. A. Sultanova
%A S. V. Kolesov
%T The inverse algorithm of imitation of radical polymerization by the Monte-Carlo method
%J Matematičeskoe modelirovanie
%D 2016
%P 3-15
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_4_a0/
%G ru
%F MM_2016_28_4_a0
V. M. Yanborisov; A. A. Sultanova; S. V. Kolesov. The inverse algorithm of imitation of radical polymerization by the Monte-Carlo method. Matematičeskoe modelirovanie, Tome 28 (2016) no. 4, pp. 3-15. http://geodesic.mathdoc.fr/item/MM_2016_28_4_a0/

[1] Bain E. D., Turgman-Cohen S., Genzer J., “Progress in computer simulation of bulk, confined, and surface-initiated polymerizations”, Macromol. Theory Simul., 22 (2013), 8–30 | DOI

[2] Ianborisov E. V., Ianborisov V. M., Spivak S. I., “Algoritm modelirovaniia polimerizatsii na katalizatorakh Tsiglera–Natta s uchetom izmeneniia aktivnosti katalizatora”, Mat. model., 22:3 (2010), 15–25

[3] Ianborisov V. M., Ianborisov E. V., Spivak S. I., Ziganshina A. S., Ulitin N. V., “Evoliutsiia molekuliarno-massovogo raspredeleniia polidienov pri polimerizatsii na politsentrovykh katalizatorakh Tsiglera–Natta”, Vestnik Kazanskogo tekhnologicheskogo universiteta, 17:4 (2014), 155–158

[4] Drache M., Drache G., “Simulating controlled radical polymerizations with mcPolymer — A Monte Carlo approach”, Polymers, 4 (2012), 1416–1442 | DOI

[5] Wulko M., “The simulation of molecular weight distributions in polyreaction kinetics by discrete Galerkin methods”, Macromol. Theory Simul., 5 (1996), 393–416 | DOI

[6] Prescott S. W., “Chain-length dependence in living/Controlled free-radical polymerizations: physical manifestation and Monte Carlo simulation of reversible transfer agents”, Macromolecules, 36 (2003), 9608–9621 | DOI

[7] He J., Zhang H., Yang Y., “Monte Carlo simulation of chain length distribution in radical polymerization with transfer reaction”, Macromol. Theory Simul., 4 (1995), 811–819 | DOI

[8] Vrentas J. S., “Review of the applications of free volume theory for diffusion in polymers”, Polym. Rev., 15 (1981), 136–138

[9] Fleury P.-A., Meyer Th., Renken A., “Solution polymerization of methyl-methacrylate at high conversion in a recycle tubular reactor”, Chemical Engineering Science, 47:9 (1992), 2597–2602 | DOI

[10] Tefera N., Weickert G., Westerterp K. R., “Modeling of free radical polymerization up to high conversion. II. Development of a mathematical model”, J. Appl. Polym. Sci., 63:12 (1997), 1663–1680 | 3.0.CO;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] Nising P., Meyer T., “Mathematical-modeling of polymerization kinetics at high monomer conversionssa critical-review”, Plaste Kautsch., 33:8 (1986), 281–285

[12] Chiu W. Y., Carratt G. M., Soong D. S., “A Computer model for the Gel Effect in free-radical polymerization”, Macromolecules, 16 (1983), 348–357 | DOI

[13] Kiparissides C., Achilias D., “Modeling of diffusion-controlled free-radical polymerization reactions”, J. Appl. Polym. Sci., 35 (1988), 1303–1323 | DOI

[14] Hoppe S., Renken A., “Modelling of the free radical polymerization of Methyl-methacrylate up to high temperatures”, Polym. React. Eng., 6:1 (1997), 1–39 | DOI

[15] Hui A. W., Hamielec A. E., “Thermal polymerization of styrene at high conversions and temperatures. An experimental study”, J. Appl. Polym. Sci., 16 (1972), 749–469 | DOI

[16] Brandrup J., Immergut E. H., Grulke E. A., Polymer handbook, fourth edition, John Wiley Sons. Inc., 1999, 2366 pp.

[17] Bamford C. H., Barb W. G., Jenkins A. D., Onyon P. F., “The kinetics of vinyl polymerization by radical mechanisms”, Butterworths scientific publication, 1958, 103–117

[18] Fenouillot F., Terrisse J., Rimlinger T., “Polymerization of methyl methacrylate at high temperature with 1-butanethiol as chain transfer agent”, J. Appl. Polym. Sci., 72:12 (1999), 1589–1599 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[19] Mahabadi H. K., O'Driscoll K. F., “Absolute rate constants in free-radical polymerization”, J. Macromol. Sci. Chem., 11:A5 (1977), 967–976 | DOI

[20] Tobolsky A. V., Baysal B., “A Review of Rates of Initiation in Vinyl Polymerization: Styrene and Methyl Methacrylate”, Polym. Sci., 11:5 (1953), 471–486 | DOI

[21] Bagdasarian Kh. S., Teoriia radikalnoi polimerizatsii, Akademiia nauk SSSR, M., 1959, 299 pp.

[22] Kuzub L. I., Peregudov N. I., Irzhak V. I., “Kinetika neizotermicheskoi polimerizatsii stirola”, Vysokomolek. soed. A, 47:9 (2005), 1–11 | MR

[23] Carswell T. G., Hill D. J. T., Londero D. I., O'Donnell J. H., Pomery P. J., Winzor C. L., “Kinetic parameters for polymerization of methyl methacrylate at 60$^\circ$C”, Polymer., 33:1 (1992), 137–140 | DOI

[24] Stickler M., “Die thermische Polymerisation von Methylmethacrylat, 1 Polymerisation in Substanz”, Makromol. Chem., 179 (1978), 2729–2745 | DOI

[25] Ulitin N. V., Deberdeev T. R., Deberdeev R. Ia., Berlin A. A., “Modelirovanie radikalnoi polimerizatsii stirola, soprovozhdaiushcheisia obratimoi peredachei tsepi v prisutstvii dibenziltritiokarbonata”, Doklady akademii nauk, 446:6 (2012), 642–645