Application of a truncated Newton method to the numerical solution of radiative heat transfer problems
Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 133-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

A truncated Newton method is used for the iterative solution of implicit discrete equations which approximate the nonlinear radiative heat transfer equations in “grey matter” assumption. Its efficiency is demonstrated by an example on the basis of the WDD-scheme of the discrete ordinate method in slab geometry.
Keywords: Newton’s method , iteration method, radiative heat transfer.
@article{MM_2016_28_3_a8,
     author = {V. V. Zaviyalov},
     title = {Application of a truncated {Newton} method to the numerical solution of radiative heat transfer problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {133--136},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_3_a8/}
}
TY  - JOUR
AU  - V. V. Zaviyalov
TI  - Application of a truncated Newton method to the numerical solution of radiative heat transfer problems
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 133
EP  - 136
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_3_a8/
LA  - ru
ID  - MM_2016_28_3_a8
ER  - 
%0 Journal Article
%A V. V. Zaviyalov
%T Application of a truncated Newton method to the numerical solution of radiative heat transfer problems
%J Matematičeskoe modelirovanie
%D 2016
%P 133-136
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_3_a8/
%G ru
%F MM_2016_28_3_a8
V. V. Zaviyalov. Application of a truncated Newton method to the numerical solution of radiative heat transfer problems. Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 133-136. http://geodesic.mathdoc.fr/item/MM_2016_28_3_a8/

[1] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985, 304 pp.

[2] L. P. Bass, A. M. Volosnenko, T. A. Germogenova, Metody diskretnyh ordinat v zadachakh o perenose izlucheniia, IPM im. Keldysha AN SSSR, 1986, 231 pp.

[3] V. Iu. Gusev, V. V. Zavyalov, M. Iu. Kozmanov, “Ob uskorenii skhodimosti iteratsi dlia sistemy perenosateplovogo izlucheniia v kineticheskom priblizhenii”, VANT, Seriia «Matmodelirovanie fizicheskikh protsessov», 2003, no. 2, 21–27

[4] V. V. Zaviyalov, A. A. Shestakov, “Identification of the diagonal element to accelerate iterations in estimating the heat transfer in kinetic approximation”, Mathematical Models and Computer Simulations, 2:5 (2010), 605–613 | DOI | Zbl

[5] V. V. Zaviyalov, “On convergence acceleration in the method for the identification of the diagonal element in problems of heat radiation transfer with scattering”, Mathematical Models and Computer Simulations, 5:6 (2013), 527–533 | DOI | MR

[6] E. S. Andreev, M. Yu. Kozmanov, E. B. Rachilov, “The maximum principle for a system of equations of energy and non-stationary radiation transfer”, USSR Computational Mathematics and Mathematical Physics, 23:1 (1983), 104–109 | DOI | MR

[7] I. P. Poshivaylo, “Usechenny mnogomerny metod Niutona”, Matematicheskoe modelirovanie, 24:1 (2012), 103–108 | MR | Zbl

[8] N. N. Kalitkin, I. P. Poshivaylo, “Computations with inverse Runge–Kutta schemes”, Mathematical Models and Computer Simulations, 6:3 (2014), 272–285 | DOI | MR | MR | Zbl

[9] V. E. Troshchiev, Iu. V. Troshchiev, “Monotonnye raznostnye ckhemy s vesom dlia uravneniia perenosa v ploskom sloe”, Matematicheskoe modelirovanie, 15:1 (2003), 3–13