Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_3_a8, author = {V. V. Zaviyalov}, title = {Application of a truncated {Newton} method to the numerical solution of radiative heat transfer problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {133--136}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_3_a8/} }
TY - JOUR AU - V. V. Zaviyalov TI - Application of a truncated Newton method to the numerical solution of radiative heat transfer problems JO - Matematičeskoe modelirovanie PY - 2016 SP - 133 EP - 136 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_3_a8/ LA - ru ID - MM_2016_28_3_a8 ER -
V. V. Zaviyalov. Application of a truncated Newton method to the numerical solution of radiative heat transfer problems. Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 133-136. http://geodesic.mathdoc.fr/item/MM_2016_28_3_a8/
[1] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985, 304 pp.
[2] L. P. Bass, A. M. Volosnenko, T. A. Germogenova, Metody diskretnyh ordinat v zadachakh o perenose izlucheniia, IPM im. Keldysha AN SSSR, 1986, 231 pp.
[3] V. Iu. Gusev, V. V. Zavyalov, M. Iu. Kozmanov, “Ob uskorenii skhodimosti iteratsi dlia sistemy perenosateplovogo izlucheniia v kineticheskom priblizhenii”, VANT, Seriia «Matmodelirovanie fizicheskikh protsessov», 2003, no. 2, 21–27
[4] V. V. Zaviyalov, A. A. Shestakov, “Identification of the diagonal element to accelerate iterations in estimating the heat transfer in kinetic approximation”, Mathematical Models and Computer Simulations, 2:5 (2010), 605–613 | DOI | Zbl
[5] V. V. Zaviyalov, “On convergence acceleration in the method for the identification of the diagonal element in problems of heat radiation transfer with scattering”, Mathematical Models and Computer Simulations, 5:6 (2013), 527–533 | DOI | MR
[6] E. S. Andreev, M. Yu. Kozmanov, E. B. Rachilov, “The maximum principle for a system of equations of energy and non-stationary radiation transfer”, USSR Computational Mathematics and Mathematical Physics, 23:1 (1983), 104–109 | DOI | MR
[7] I. P. Poshivaylo, “Usechenny mnogomerny metod Niutona”, Matematicheskoe modelirovanie, 24:1 (2012), 103–108 | MR | Zbl
[8] N. N. Kalitkin, I. P. Poshivaylo, “Computations with inverse Runge–Kutta schemes”, Mathematical Models and Computer Simulations, 6:3 (2014), 272–285 | DOI | MR | MR | Zbl
[9] V. E. Troshchiev, Iu. V. Troshchiev, “Monotonnye raznostnye ckhemy s vesom dlia uravneniia perenosa v ploskom sloe”, Matematicheskoe modelirovanie, 15:1 (2003), 3–13